e-ISSN 2231-8542
ISSN 1511-3701
Sigit Nur Pratama, Fenny Martha Dwivany and Husna Nugrahapraja
Pertanika Journal of Tropical Agricultural Science, Volume 44, Issue 4, November 2021
DOI: https://doi.org/10.47836/pjtas.44.4.01
Keywords: Banana, B, A, and S genomes, reverse transcriptase, transposable elements
Published on: 2 November 2021
In plants, the proportion of transposable elements (TEs) is generally dominated by long terminal repeat (LTR) retroelements. Therefore, it significantly impacts on genome expansion and genetic and phenotypic variation, namely Copia and Gypsy. Despite such contribution, TEs characterisation in an important crop such as banana [Musa balbisiana (B genome), Musa acuminata (A genome), and Musa schizocarpa (S genome)] remains poorly understood. This study aimed to compare B, A, and S genomes based on repetitive element proportions and copy numbers and determine the evolutionary relationship of LTR using phylogenetic analysis of the reverse transcriptase (RT) domain. Genome assemblies were acquired from the Banana Genome Hub (banana-genome-hub.southgreen.fr). Repetitive elements were masked by RepeatMasker 4.0.9 before Perl parsing. Phylograms were constructed according to domain analysis using DANTE (Domain-based ANnotation of Transposable Elements), alignments were made using MAFFT 7 (multiple alignments using fast Fourier transform), and trees were inferred using FastTree 2. The trees were inspected using SeaView 4 and visualised with FigTree 1.4.4. We reported that B, A, and S genomes are composed of repetitive elements with 19.38%, 20.78%, and 25.96%, respectively. The elements were identified with dominant proportions in the genome are LTR, in which Copia is more abundant than Gypsy. Based on RT phylogenetic analysis, LTR elements are clustered into 13 ancient lineages in which Sire (Copia) and Reina (Gypsy) are shown to be the most abundant LTR lineages in bananas.
Bailly-Bechet, M., Haudry, A., & Lerat, E. (2014). “One code to find them all”: A perl tool to conveniently parse RepeatMasker output files. Mobile DNA, 5(1), 13. https://doi.org/10.1186/1759-8753-5-13
Belser, C., Istace, B., Denis, E., Dubarry, M., Baurens, F. C., Falentin, C., Genete, M., Berrabah, W., Chèvre, A. M., Delourme, R., & Deniot, G. (2018). Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nature Plants, 4(11), 879–887. https://doi.org/10.1038/s41477-018-0289-4
Benson, G. (1999). Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Research, 27(2), 573-580. https://doi.org/10.1093/nar/27.2.573
Chabannes, M., Baurens, F.-C., Duroy, P.-O., Bocs, S., Vernerey, M.-S., Rodier-Goud, M., Barbe, V., Gayral, P., & Iskra-Caruana, M.-L. (2013). Three infectious viral species lying in wait in the banana genome. Journal of Virology, 87(15), 8624–8637. https://doi.org/10.1128/jvi.00899-13
D’Hont, A., Paget-Goy, A., Escoute, J., & Garreel, F. (2000). The interspecific genome structure of cultivated banana, Musa spp. revealed by genome DNA in situ hybridization. Theoretical and Applied Genetics, 100(2), 177–183. https://doi.org/10.1007/s001220050024
D’Hont, A., Denoeud, F., Aury, J. M., Baurens, F. C., Carreel, F., Garsmeur, O., Noel, B., Bocs, S., Droc, G., Rouard, M., Da Silva, C., Jabbari, K., Cardi, C., Poulain, J., Souquet, M., Labadie, K., Jourda, C., Lengellé, J., Rodier-Goud, M., … Wincker, P. (2012). The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature, 488(7410), 213–217. https://doi.org/10.1038/nature11241
Davey, M. W., Gudimella, R., Harikrishna, J. A., Sin, L. W., Khalid, N., & Keulemans, J. (2013). A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids. BMC Genomics, 14(1), 683. https://doi.org/10.1186/1471-2164-14-683
Dewannieux, M., Esnault, C., & Heidmann, T. (2003). LINE-mediated retrotransposition of marked Alu sequences. Nature Genetics, 35(1), 41-48. https://doi.org/10.1038/ng1223
Doležel, J., Doleželová, M., & Novák, F. J. (1994). Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biologia Plantarum, 36(3), 351. https://doi.org/10.1007/BF02920930
Domingues, D. S., Cruz, G. M. Q., Metcalfe, C. J., Nogueira, F. T. S., Vicentini, R., de S Alves, C., & van Sluys, M. A. (2012). Analysis of plant LTR-retrotransposons at the fine-scale family level reveals individual molecular patterns. BMC Genomics, 13(1), 137. https://doi.org/10.1186/1471-2164-13-137
Droc, G., Larivière, D., Guignon, V., Yahiaoui, N., This, D., Garsmeur, O., Dereeper, A., Hamelin, C., Argout, X., Dufayard, J.-F., Lengelle, J., Baurens F.-C., Cenci, A., Pitollat, B., D’Hont, A., Ruiz, M., Rouard, M., & Bocs, S. (2013). The Banana Genome Hub. Database, 2013, bat035. https://doi.org/10.1093/database/bat035
Du, J., Tian, Z., Bowen, N. J., Schmutz, J., Shoemaker, R. C., & Ma, J. (2010). Bifurcation and enhancement of autonomous-nonautonomous retrotransposon partnership through LTR swapping in soybean. Plant Cell, 22(1), 48–61. https://doi.org/10.1105/tpc.109.068775
Food and Agriculture Organization. (2019). FAOSTAT: Crops. http://www.fao.org/faostat/en/#data
Gouy, M., Guindon, S., & Gascuel, O. (2010). Sea view version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27(2), 221–224. https://doi.org/10.1093/molbev/msp259
Hoen, D. R., & Bureau, T. E. (2015). Discovery of novel genes derived from transposable elements using integrative genomic analysis. Molecular Biology and Evolution, 32(6), 1487–1506. https://doi.org/10.1093/molbev/msv042
Hřibová, E., Neumann, P., Matsumoto, T., Roux, N., Macas, J., & Doležel, J. (2010). Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biology, 10(1), 204. https://doi.org/10.1186/1471-2229-10-204
Hubley, R., Finn, R. D., Clements, J., Eddy, S. R., Jones, T. A., Bao, W., Smit, A. F. A., & Wheeler, T. J. (2016). The Dfam database of repetitive DNA families. Nucleic Acids Research, 44(D1), D81-D89. https://doi.org/10.1093/nar/gkv1272
Joly-Lopez, Z., Hoen, D. R., Blanchette, M., & Bureau, T. E. (2016). Phylogenetic and genomic analyses resolve the origin of important plant genes derived from transposable elements. Molecular Biology and Evolution, 33(8), 1937–1956. https://doi.org/10.1093/molbev/msw067
Jurka, J., Kapitonov, V. V., Pavlicek, A., Klonowski, P., Kohany, O., & Walichiewicz, J. (2005). Repbase Update, a database of eukaryotic repetitive elements. Cytogenetic and Genome Research, 110(1-4), 462-467. https://doi.org/10.1159/000084979
Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780. https://doi.org/10.1093/molbev/mst010
Kaul, S., Koo, H. L., Jenkins, J., Rizzo, M., Rooney, T., Tallon, L. J., Feldblyum, T., Nierman, W., Benito, M. I., Lin, X., Town, C. D., Venter, J. C., Fraser, C. M., Tabata, S., Nakamura, Y., Kaneko, T., Sato, S., Asamizu, E., Kato, T., … Somerville, C. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408(6814), 796-815. https://doi.org/10.1038/35048692
Kidwell, M. G. (2002). Transposable elements and the evolution of genome size in eukaryotes. Genetica, 115(1), 49-63. https://doi.org/10.1023/A:1016072014259
Knip, M., Hiemstra, S., Sietsma, A., Castelein, M., de Pater, S., & Hooykaas, P. (2013). DAYSLEEPER: A nuclear and vesicular-localized protein that is expressed in proliferating tissues. BMC Plant Biology, 13(1), 211. https://doi.org/10.1186/1471-2229-13-211
Lin, R., Ding, L., Casola, C., Ripoll, D. R., Feschotte, C., & Wang, H. (2007). Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science, 318(5854), 1302-1305. https://doi.org/10.1126/science.1146281
Lisch, D. (2013). How important are transposons for plant evolution?. Nature Reviews Genetics, 14(1), 49–61. https://doi.org/10.1038/nrg3374
Llorens, C., Muñoz-Pomer, A., Bernad, L., Botella, H., & Moya, A. (2009). Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees. Biology Direct, 4(1), 41. https://doi.org/10.1186/1745-6150-4-41
Martin, G., Baurens, F. C., Droc, G., Rouard, M., Cenci, A., Kilian, A., Hastie, A., Doležel, J., Aury, J.-M., Alberti, A., Carreel, F., & D’Hont, A. (2016). Improvement of the banana “Musa acuminata” reference sequence using NGS data and semi-automated bioinformatics methods. BMC Genomics, 17(1), 243. https://doi.org/10.1186/s12864-016-2579-4
Neumann, P., Novák, P., Hoštáková, N., & MacAs, J. (2019). Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mobile DNA, 10(1), 1. https://doi.org/10.1186/s13100-018-0144-1
Novák, P., Neumann, P., & Macas, J. (2010). Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics, 11(1), 378. https://doi.org/10.1186/1471-2105-11-378
Nugrahapraja, H., Putri, A. E., & Martha, D. F. (2021). Genome-wide identification and characterization of the pectin methylesterase (PME) and pectin methylesterase inhibitor (PMEI) gene family in the banana A-genome (Musa acuminata) and B-genome (Musa balbisiana). Research Journal of Biotechnology, 16(2), 179–191.
Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree 2 - Approximately maximum-likelihood trees for large alignments. PLOS One, 5(3), e9490. https://doi.org/10.1371/journal.pone.0009490
Ragupathy, R., You, F. M., & Cloutier, S. (2013). Arguments for standardizing transposable element annotation in plant genomes. Trends in Plant Science, 18(7), 367-376. https://doi.org/10.1016/j.tplants.2013.03.005
Rambaut, A. (2018). FigTree v. 1.4.4. http://Tree.Bio.Ed.Ac.Uk/Software/Figtree/
Shimodaira, H. (2002). An approximately unbiased test of phylogenetic tree selection. Systematic Biology, 51(3), 492-508. https://doi.org/10.1080/10635150290069913
Smit, A., Hubley, R., & Grenn, P. (2015). RepeatMasker Open-4.0.7. http://www.repeatmasker.org/
Vitte, C., Fustier, M. A., Alix, K., & Tenaillon, M. I. (2014). The bright side of transposons in crop evolution. Briefings in Functional Genomics and Proteomics, 13(4), 276–295. https://doi.org/10.1093/bfgp/elu002
Vitte, C., & Panaud, O. (2005). LTR retrotransposons and flowering plant genome size: Emergence of the increase/decrease model. Cytogenetic and Genome Research, 110(1–4), 91–107. https://doi.org/10.1159/000084941
Wicker, T., & Keller, B. (2007). Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Research, 17(7), 1072-1081. https://doi.org/10.1101/gr.6214107
Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J. L., Capy, P., Chalhoub, B., Flavell, A., Leroy, P., Morgante, M., Panaud, O., Paux, E., SanMiguel, P., & Schulman, A. H. (2007). A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics, 8(12), 973-982. https://doi.org/10.1038/nrg2165
Wu, W., Yang, Y.-L., He, W.-M., Rouard, M., Li, W.-M., Xu, M., Roux, N., & Ge, X.-J. (2016). Whole genome sequencing of a banana wild relative Musa itinerans provides insights into lineage-specific diversification of the Musa genus. Scientific Reports, 6(1), 31586. https://doi.org/10.1038/srep31586
Zhang, Q. J., & Gao, L. Z. (2017). Rapid and recent evolution of LTR retrotransposons drives rice genome evolution during the speciation of AA-genome Oryza species. G3: Genes, Genomes, Genetics, 7(6), 1875–1885. https://doi.org/10.1534/g3.116.037572
ISSN 1511-3701
e-ISSN 2231-8542