Home / Regular Issue / JTAS Vol. 45 (3) Aug. 2022 / JTAS-2397-2021


Essential Dynamics of Rice Cultivated under Intensification on Acid Sulfate Soils Ameliorated with Composted Oyster Mushroom Baglog Waste

Jumar, Riza Adrianoor Saputra, Muhammad Imam Nugraha and Ahmad Wahyudianur

Pertanika Journal of Tropical Agricultural Science, Volume 45, Issue 3, August 2022

DOI: https://doi.org/10.47836/pjtas.45.3.02

Keywords: Acid sulfate soils, eco-friendly agriculture, rice intensification, suboptimal land

Published on: 8 August 2022

This study examines the dynamics of essential macro-nutrients for rice cultivation in acid sulfate soils ameliorated with composted oyster mushroom baglog waste. A single factor randomized block design (RBD) was used, and the factors studied include the compost dose of oyster mushroom baglog waste, which consists of 5 treatment levels, namely 0 t ha-1 (control), 5 t ha-1, 10 t ha-1, 15 t ha-1, and 20 t ha-1. Furthermore, this study was carried out from May to September 2021 in the rice fields of the Faculty of Agriculture, Lambung Mangkurat University (ULM), Sungai Rangas Village, Banjar Regency, South Kalimantan. The rice plants were cultivated using an intensification technique, and the compost was applied based on the research treatment for two weeks on prepared land before planting. Also, Bartlett’s test was carried out before analysis of variance, which had a significant effect of P<0.05, and was further tested using Duncan’s Multiple Range Test (DMRT) at a 5% level. The results showed variations in the availability of macro-nutrients at five different growth stages: early planting, full vegetative, early panicle emergence, panicle filling, and harvesting phases. The highest levels of ammonium (NH4+) and nitrate (NH3-) were found in the full vegetative stage, while early planting had the lowest. Also, there was an increase in the available phosphorus (P) from the early planting to the full vegetative stage. The increase in exchangeable potassium (K) occurred at the transition of these stages. These increasing nutrients were due to the addition of the compost. The higher the NH4+, NO3-, available P, and exchangeable K in acid sulfate soils, the more nitrogen (N), P, and K uptake in rice plants. The provision of the compost supplied N, P, and K in available forms and reduced the amount of soluble alumunium (Al) and iron (Fe). Thereby the plant roots absorb the nutrients optimally. Additionally, the compost increased the essential macro-nutrient availability and plant uptake using the rice intensification technique from early planting to harvest.

  • Abreu Jr., C. H., Muraoka, T., & Lavorante, A. F. (2003). Exchangeable aluminum evaluation in acid soils. Scientia Agricola, 60(3), 543–548. https://doi.org/10.1590/S0103-90162003000300020

  • Arif, C., Setiawan, B. I., Saputra, S. F. D., & Mizoguchi, M. (2019). Water balance analysis on water management of organic System of Rice Intensification (organic-SRI) in West Java, Indonesia. Jurnal Irigasi, 14(1), 17. https://doi.org/10.31028/ji.v14.i1.17-24

  • Bonanomi, G., De Filippis, F., Zotti, M., Idbella, M., Cesarano, G., Al-Rowaily, S., & Abd-ElGawad, A. (2020). Repeated applications of organic amendments promote beneficial microbiota, improve soil fertility and increase crop yield. Applied Soil Ecology, 156, 103714. https://doi.org/10.1016/j.apsoil.2020.103714

  • Burhan, B., & Proyogo, R. (2019). Pengaruh komposisi kompos baglog terhadap pertumbuhan dan hasil tanaman bawang merah (Allium ascalonicum L.) [Effect of baglog compost composition on the growth and yield of onion plants (Allium ascalonicum L.)]. Jurnal Penelitian Pertanian Terapan, 18(2), 73. https://doi.org/10.25181/jppt.v18i2.1068

  • Chunmei, X., Liping, C., Song, C., Guang, C., Danying, W., & Xiufu, Z. (2020). Rhizosphere aeration improves nitrogen transformation in soil, and nitrogen absorption and accumulation in rice plants. Rice Science, 27(2), 162–174. https://doi.org/10.1016/j.rsci.2020.01.007

  • Dobermann, A., & Fairhurst, T. (2000). Rice: Nutrient disorders and nutrient management (1st ed.). Potash and Phosphate Institute.

  • Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics, 11(1), 1-42. https://doi.org/10.2307/3001478

  • Etienne, P., Diquelou, S., Prudent, M., Salon, C., Maillard, A., & Ourry, A. (2018). Macro and micronutrient storage in plants and their remobilization when facing scarcity: The case of drought. Agriculture, 8(1), 14. https://doi.org/10.3390/agriculture8010014

  • Eusterhues, K., Rumpel, C., & Kögel-Knabner, I. (2005). Stabilization of soil organic matter isolated via oxidative degradation. Organic Geochemistry, 36(11), 1567–1575. https://doi.org/10.1016/j.orggeochem.2005.06.010

  • Eviati, S., & Sulaeman, M. (2009). Petunjuk teknis: Analisis kimia tanah, tanaman, air, dan pupuk (edisi 2) [Technical guide: Chemical analysis of soil, plants, water and fertilizers] (2nd ed.). Balai Penelitian Tanah.

  • Ge, T., Liu, C., Yuan, H., Zhao, Z., Wu, X., Zhu, Z., Brookes, P., & Wu, J. (2015). Tracking the photosynthesized carbon input into soil organic carbon pools in a rice soil fertilized with nitrogen. Plant and Soil, 392(1–2), 17–25. https://doi.org/10.1007/s11104-014-2265-8

  • Ge, T., Yuan, H., Zhu, H., Wu, X., Nie, S., Liu, C., Tong, C., Wu, J., & Brookes, P. (2012). Biological carbon assimilation and dynamics in a flooded rice – Soil system. Soil Biology and Biochemistry, 48, 39–46. https://doi.org/10.1016/j.soilbio.2012.01.009

  • Guo, X., Liu, H., & Zhang, J. (2020). The role of biochar in organic waste composting and soil improvement: A review. Waste Management, 102, 884–899. https://doi.org/10.1016/j.wasman.2019.12.003

  • Gutiérrez Boem, F. H., Rubio, G., & Barbero, D. (2011). Soil phosphorus extracted by Bray 1 and Mehlich 3 soil tests as affected by the soil/solution ratio in Mollisols. Communications in Soil Science and Plant Analysis, 42(2), 220–230. https://doi.org/10.1080/00103624.2011.535072

  • Hanifa, H., Utami, S. N. H., Wulandari, C., & Yusuf, W. A. (2019). Soil chemical properties and corn productivity as affected by application of different types of fertilizer and planting method in acid sulfate soil. In IOP Conference Series: Earth and Environmental Science, (Vol. 393, No. 1, p. 012001). IOP Publishing. https://doi.org/10.1088/1755-1315/393/1/012001

  • Hasanah, N. A. I., Setiawan, B. I., Arif, C., & Widodo, S. (2021). Economic valuation of SRI paddy. In IOP Conference Series: Earth and Environmental Science (Vol. 622, No. 1, p. 012050). IOP Publishing. https://doi.org/10.1088/1755-1315/622/1/012050

  • Hunaepi, D., Iwan, D., & Asy’ari, M. (2018). Mengolah limbah baglog jamur menjadi pupuk organik [Processing fungal baglog waste into organic fertilizer]. Duta Pustaka Ilmu.

  • Indonesian Agency for Agricultural Research and Development. (2011). State of the art and grand design pengembangan lahan rawa [State of the art and grand design swampland development]. IAARD. http://repository.pertanian.go.id/handle/123456789/6922

  • Indonesian National Standardization Agency. (2004). Spesifikasi kompos dari sampah organik domestik [Spesifications of compost from domestic organic waste]. Badan Standarisasi Nasional. https://www.nawasis.org/portal/download/digilib/953-SNI-2004_7030_19.pdf

  • Isnaini, S. (2005). Kandungan amonium dan kalium tanah dan serapannya serta hasil padi akibat perbedaan pengolahan tanah yang dipupuk nitrogen dan kalium pada tanah sawah [Soil ammonium and potassium content and their absoption and rice yield due to differences in soil processing fertilized with nitrogen and potassium in rice field soil]. Jurnal Ilmu-Ilmu Pertanian Indonesia, 7(1), 23–34. https://doi.org/10.31186/jipi.7.1.23-34

  • Jumar, Saputra, R. A., & Putri, K. A. (2020, November 23-24). Kualitas kompos limbah baglog jamur tiram [Quality of oyster mushroom baglog waste compost] [Paper presentation]. Prosiding Seminar Nasional Lingkungan Lahan Basah, Banjarmasin, Indonesia. https://snllb.ulm.ac.id/prosiding/index.php/snllb-lit/article/view/510

  • Jumar, Saputra, R. A., Sari, N. N., & Wahyudianur, A. (2021). Effect of Pleurotus ostreatus substrates compost on the chemical properties of acid sulfate soils. In IOP Conference Series: Earth and Environmental Science (Vol. 807, No. 3, p. 032093). IOP Publishing. https://doi.org/10.1088/1755-1315/807/3/032093

  • Juo, A. S. R. (Ed.). (1978). Selected methods for soil and plant analysis (Manual series No. 1). International Institute of Tropical Agriculture.

  • Khan, I., Fahad, S., Wu, L., Zhou, W., Xu, P., Sun, Z., Salam, A., Imran, M., Jiang, M., Kuzyakov, Y., & Hu, R. (2019). Labile organic matter intensifies phosphorous mobilization in paddy soils by microbial iron (III) reduction. Geoderma, 352, 185–196. https://doi.org/10.1016/j.geoderma.2019.06.011

  • Khotimah, K., Suwastika, A. A. N. G., & Atmaja, I. W. D. (2020). Dinamika amonium dan nitrat pada lahan sawah semi organik untuk tanaman padi lokal dan hibrida di Subak Jatiluwih Kabupaten Tabanan [Dynamics of ammonium and nitrate in semi-organic rice fields for local and hybrid rice crops in Subak Jatiluwih, Tabanan Regency]. Agrotrop: Journal on Agriculture Science, 10(1), 39-48. https://doi.org/10.24843/AJoAS.2020.v10.i01.p05

  • Kumar, S., Kumar, S., & Mohapatra, T. (2021). Interaction between macro‐ and micro-nutrients in plants. Frontiers in Plant Science, 12, 665583. https://doi.org/10.3389/fpls.2021.665583

  • Lin, Y., Bhattacharyya, A., Campbell, A. N., Nico, P. S., Pett‐Ridge, J., & Silver, W. L. (2018). Phosphorus fractionation responds to dynamic redox conditions in a humid tropical forest soil. Journal of Geophysical Research: Biogeosciences, 123(9), 3016–3027. https://doi.org/10.1029/2018JG004420

  • Manolikaki, I., & Diamadopoulos, E. (2019). Positive effects of biochar and biochar-compost on maize growth and nutrient availability in two agricultural soils. Communications in Soil Science and Plant Analysis, 50(5), 512–526. https://doi.org/10.1080/00103624.2019.1566468

  • Marchezan, C., Ferreira, P. A. A., Silva, L. S., Bacca, A., Krug, A. V., Nicoloso, F. T., Tarouco, C. P., Tiecher, T. L., Brunetto, G., & Ceretta, C. A. (2020). Nitrogen availability and physiological response of corn after 12 years with organic and mineral fertilization. Journal of Soil Science and Plant Nutrition, 20(3), 979–989. https://doi.org/10.1007/s42729-020-00185-2

  • Matthews, B. C., & Smith, J. A. (1957). A percolation method for measuring potassium-supplying power of soils. Canadian Journal of Soil Science, 37(1), 21–28. https://doi.org/10.4141/cjss57-003

  • Meena, A. L., Karwal, M., Dutta, D., & Mishra, R. P. (2021). Composting: Phases and factors responsible for efficient and improved composting. http://rgdoi.net/10.13140/RG.2.2.13546.95689

  • Meng, X., Liu, B., Zhang, H., Wu, J., Yuan, X., & Cui, Z. (2019). Co-composting of the biogas residues and spent mushroom substrate: Physicochemical properties and maturity assessment. Bioresource Technology, 276, 281–287. https://doi.org/10.1016/j.biortech.2018.12.097

  • Michael, P. S. (2020). Simple carbon and organic matter addition in acid sulfate soils and time-dependent changes in pH and redox under varying moisture regimes. Asian Journal of Agriculture, 4(1), 23–29. https://doi.org/10.13057/asianjagric/g040105

  • Michael, P. S., Fitzpatrick, R. W., & Reid, R. J. (2017). Effects of live wetland plant macrophytes on acidification, redox potential and sulphate content in acid sulphate soils. Soil Use and Management, 33(3), 471–481. https://doi.org/10.1111/sum.12362

  • Michael, P. S., Fitzpatrick, R., & Reid, R. (2015). The role of organic matter in ameliorating acid sulfate soils with sulfuric horizons. Geoderma, 255–256, 42–49. https://doi.org/10.1016/j.geoderma.2015.04.023

  • Miller, R. O., & Horneck, D. (1997). Determination of total nitrogen in plant tissue. In Y. Kalra (Ed.), Handbook of reference methods for plant analysis (pp. 75–83). CRC Press. https://doi.org/10.1201/9781420049398.ch9

  • Ministry of Agriculture Republic Indonesia. (2007). Rekomendasi pemupukan N, P, dan K pada padi sawah spesifikasi lokasi [Recommendations for fertilizing N, P, and K in rice fields location spesific]. Badan Penelitian dan Pengembangan Pertanian. https://www.litbang.pertanian.go.id/regulasi/11/

  • Naeem, M., Ansari, A. A., Gill, S. S., Aftab, T., Idrees, Mohd., Ali, A., & Khan, M. M. A. (2017). Regulatory role of mineral nutrients in nurturing of medicinal legumes under salt stress. In M. Naeem, A. A. Ansari, & S. S. Gill (Eds.), Essential plant nutrients (pp. 309–334). Springer International Publishing. https://doi.org/10.1007/978-3-319-58841-4_12

  • Neves, A. C., da Costa, P., de Oliveira Silva, C. A., Pereira, F. R., & Mol, M. P. G. (2021). Analytical methods comparison for pH determination of composting process from green wastes. Environmental Engineering and Management Journal, 20(1), 133–139. https://doi.org/10.30638/eemj.2021.014

  • Nursyamsi, D., Raihan, S., Noor, M., Anwar, K., Alwi, M., Maftuah, E., Khairullah, I., Ar-Riza, I., Simatupang, S., Noorginayuwati, & Rina, Y. (2014). Buku pedoman pengelolaan lahan sulfat masam untuk pertanian berkelanjutan [Handbook of acid sulfate soil management for sustainable agriculture]. IAARD Press.

  • Peretyazhko, T., & Sposito, G. (2005). Iron (III) reduction and phosphorous solubilization in humid tropical forest soils. Geochimica et Cosmochimica Acta, 69(14), 3643–3652. https://doi.org/10.1016/j.gca.2005.03.045

  • Permatasari, P., Anantanyu, S., & Dewi, W. S. (2018). Pengaruh tingkat adopsi budidaya padi organik terhadap keberlanjutan budidaya padi organik di Kabupaten Boyolali [The effect of organic rice cultivation adoption rate on the sustainbility of organic rice cultivation in Boyolali Regency]. Caraka Tani: Journal of Sustainable Agriculture, 33(2), 153-168. https://doi.org/10.20961/carakatani.v33i2.22296

  • Phuong, N. T. K., Khoi, C. M., Ritz, K., Linh, T. B., Minh, D. D., Duc, T. A., Sinh, N. V., Linh, T. T., & Toyota, K. (2020a). Influence of rice husk biochar and compost amendments on salt contents and hydraulic properties of soil and rice yield in salt-affected fields. Agronomy, 10(8), 1101. https://doi.org/10.3390/agronomy10081101

  • Phuong, N. T. K., Khoi, C. M., Ritz, K., Sinh, N. V., Tarao, M., & Toyota, K. (2020b). Potential use of rice husk biochar and compost to improve P availability and reduce GHG emissions in acid sulfate soil. Agronomy, 10(5), 685. https://doi.org/10.3390/agronomy10050685

  • Prabowo, H., Rahmawati, N., & Sitepu, F. E. T. (2020). The effect of oyster mushroom baglog compost on the growth and production some local genotypes of purple sweet potato (Ipomoea batatas L.). In IOP Conference Series: Earth and Environmental Science (Vol. 454, No. 1, p. 012172). IOP Publishing. https://doi.org/10.1088/1755-1315/454/1/012172

  • Prasetyo, O. R., Astuti, K., & Khasanah, I. N. (2021). Analisis produktivitas padi di Indonesia 2020 (hasil Survei Ubinan) [Analysis of rice productivity in Indonesia 2020 (results of the Tile Survey)]. Badan Pusat Statistik. https://www.bps.go.id/publication/2021/07/12/ed3e9eba9bbc7a1a6a3f4b6d/analisis-produktivitas-padi-di-indonesia-2020--hasil-survei-ubinan-.html

  • Rabenhorst, M. C., Hively, W. D., & James, B. R. (2009). Measurements of soil redox potential. Soil Science Society of America Journal, 73(2), 668–674. https://doi.org/10.2136/sssaj2007.0443

  • Raun, W. R., Olson, R. A., Sander, D. H., & Westerman, R. L. (1987). Alternative procedure for total phosphorus determination in plant tissue. Communications in Soil Science and Plant Analysis, 18(5), 543–557. https://doi.org/10.1080/00103628709367840

  • Razie, F. (2018, November 10). Potensi produksi padi di tanah sulfat masam dengan kedalaman pirit berbeda [Rice production potential in acid sulfate soils with different pyrite depths] [Paper presentation]. Prosiding Seminar Nasional Lingkungan Lahan Basah, Banjarmasin, Indonesia. http://snllb.ulm.ac.id/prosiding/index.php/snllb-lit/article/view/166

  • Ritung, S. (2012, June 29-30). Karakteristik dan sebaran lahan sawah di indonesia [Characteristics and distribution of rice fields in Indonesia] [Paper presentation]. Prosiding Seminar Nasional Teknologi Pemupukan dan Pemulihan Lahan Terdegradasi, Bogor, Indonesia. http://eprints.ulm.ac.id/2034/7/12_PUS-34-Hal%20383-390-%20Ahmad%20Kurnain.pdf

  • Rogovska, N., Laird, D. A., Rathke, S. J., & Karlen, D. L. (2014). Biochar impact on Midwestern Mollisols and maize nutrient availability. Geoderma, 230–231, 340–347. https://doi.org/10.1016/j.geoderma.2014.04.009

  • Said-Pullicino, D., Miniotti, E. F., Sodano, M., Bertora, C., Lerda, C., Chiaradia, E. A., Romani, M., de Maria, C. S., Sacco, D., & Celi, L. (2016). Linking dissolved organic carbon cycling to organic carbon fluxes in rice paddies under different water management practices. Plant and Soil, 401, 273–290. https://doi.org/10.1007/s11104-015-2751-7

  • Saidy, A. R. (2018). Bahan organik tanah: Klasifikasi, fungsi dan metode studi [Soil organic matter: Classification, functions and methods of study]. Lambung Mangkurat University Press.

  • Saputra, R. A., & Sari, N. N. (2021). Ameliorant engineering to elevate soil pH, growth, and productivity of paddy on peat and tidal land. In IOP Conference Series: Earth and Environmental Science (Vol. 648, No. 1, p. 012183). IOP Publishing. https://doi.org/10.1088/1755-1315/648/1/012183

  • Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia and Analgesia, 126(5), 1763–1768. https://doi.org/10.1213/ANE.0000000000002864

  • Seehausen, M., Gale, N., Dranga, S., Hudson, V., Liu, N., Michener, J., Thurston, E., Williams, C., Smith, S., & Thomas, S. (2017). Is there a positive synergistic effect of biochar and compost soil amendments on plant growth and physiological performance?. Agronomy, 7(1), 13. https://doi.org/10.3390/agronomy7010013

  • Shamshuddin, J., Jamilah, I., & Ogunwale, J., A. (1994). Organic carbon determination in acid sulphate soils. Pertanika Journal of Tropical Agricultural Science, 17(3), 197–200.

  • Sopha, G. A., Rosliani, R., Basuki, R. S., & Liferdi, L. (2015). Correlation of plant nutrients uptake with shallot production in alluvial soils. AAB Bioflux, 7(2), 11.

  • Statistics Indonesia. (2020). Persentase penduduk daerah perkotaan menurut provinsi, 2010-2035 [Percentage of residents of urban areas by province, 2010-2035]. Badan Pusat Statistik. https://www.bps.go.id/statictable/2014/02/18/1276/persentase-penduduk-daerah-perkotaan-menurut-provinsi-2010-2035.html

  • Stirling, E., Fitzpatrick, R. W., & Mosley, L. M. (2020). Drought effects on wet soils in inland wetlands and peatlands. Earth-Science Reviews, 210, 103387. https://doi.org/10.1016/j.earscirev.2020.103387

  • Sudarmo. (2004). Perubahan sifat-sifat bahan sulfidik akibat pengeringan dan pencucian serta pengaruhnya terhadap kualitas air cucian [Changes in the properties of sulfidic materials due to drying and washing and their effect on washing water quality] [Doctoral dissertation, IPB University]. IPB University Scientific Repository. http://repository.ipb.ac.id/handle/123456789/41478

  • Sugiarta, A. A. G. (2016). Upaya menghembat pemakaian air irigasi pada budidaya padi [Efforts to reduce the use of irrigation water in rice cultivation]. Udayana University Press.

  • Sulaiman, A. A., Simatupang, P., Kariyasa, I. K., Subagyono, K., Las, I., Jamal, E., Hermanto, Syahyuti, Sumaryanto, & Suwandi. (2018). Sukses swasembada Indonesia menuju Lumbung Pangan Dunia 2045 [Indonesia’s successful self-sufficiency towards the World Food Barn 2045] (2nd ed.). Indonesian Agency for Agricultural Research and Development Press.

  • Sundström, R., Åström, M., & österholm, P. (2002). Comparison of the metal content in acid sulfate soil runoff and industrial effluents in Finland. Environmental Science and Technology, 36(20), 4269–4272. https://doi.org/10.1021/es020022g

  • Susilawati, & Raharjo, B. (2010, November). Petunjuk teknis: Budidaya jamur tiram (Pleurotus ostreatus var. Florida) yang ramah lingkungan [Technical instructions: Environmentally friendly cultivation of oyster mushroom (Pleurotus ostreatus var. Florida)]. Balai Pengkajian Teknologi Pertanian Sumatera Selatan. http://forclime.org/merang/50-STE-FINAL.pdf

  • Sutandi, A., Nugroho, B., & Sejati, B. (2011). Hubungan kedalaman pirit dengan beberapa sifat kimia tanah dan produksi kelapa sawit (Elais guineensis). Jurnal Ilmu Tanah dan Lingkungan, 13(1), 21-24. https://doi.org/10.29244/jitl.13.1.21-24

  • Upboff, N. (2008). The system of rice intensification (SRI) as a system of agricultural innovation. Jurnal Ilmu Tanah Dan Lingkungan, 10(1), 27–40. https://doi.org/10.29244/jitl.10.1.27-40

  • Ure, M., Thomas, R., & Littlejohn, D. (1993). Ammonium acetate extracts and their analysis for the speciation of metal ions in soils and sediments. International Journal of Environmental Analytical Chemistry, 51(1–4), 65–84. https://doi.org/10.1080/03067319308027612

  • Watmough, S. A., & Orlovskaya, L. (2015). Predicting metal release from peatlands in Sudbury, Ontario, in response to drought. Water, Air, and Soil Pollution, 226, 103. https://doi.org/10.1007/s11270-015-2372-z

  • Zanin, L., Tomasi, N., Cesco, S., Varanini, Z., & Pinton, R. (2019). Humic substances contribute to plant iron nutrition acting as chelators and biostimulants. Frontiers in Plant Science, 10, 675. https://doi.org/10.3389/fpls.2019.00675

  • Zhang, Y., Hua, J., Li, Y., Chen, Y., & Yang, J. (2012). Effects of phosphorus on grain quality of upland and paddy rice under different cultivation. Rice Science, 19(2), 135–142. https://doi.org/10.1016/S1672-6308(12)60032-8

ISSN 0128-7702

e-ISSN 2231-8534

Article ID


Download Full Article PDF

Share this article

Recent Articles