Home / Regular Issue / JTAS Vol. 31 (5) Aug. 2023 / JST-3786-2022

 

Effects of Microwave Power and Carrier Materials on Anthocyanins, Antioxidants, and Total Phenolic Content of Encapsulated Clitoria ternatea Flower Extract

Nurul Asyikin Md Zaki, Junaidah Jai, Mohd Hakim Syuwari Hasan, Nur Qistina Mohamad Kamarul Azman, Syafiza Abd Hashib, Nozieana Khairuddin, Norashikin Mat Zain and Nurul Hidayah Samsulrizal

Pertanika Journal of Tropical Agricultural Science, Volume 31, Issue 5, August 2023

DOI: https://doi.org/10.47836/pjst.31.5.11

Keywords: Active compounds, anthocyanins, blue pea flower, microwave encapsulation, total phenolic content

Published on: 31 July 2023

Clitoria ternatea, also famously known as the blue pea flower (local name: bunga telang), has attracted interest among researchers due to its plethora of biological and pharmacological properties. It is rich in anthocyanin and widely used as a natural food colourant. However, the poor stability of active compounds may affect the therapeutic benefits and limit their application in the pharmaceutical and food industries. Hence, this work aims to study the effects of microwave encapsulation on the anthocyanins, antioxidants, and total phenolic content of Clitoria ternatea flower extract (CTFE). Microwave-assisted encapsulation (MAEC) was carried out at three different powers (300, 450, and 600 W) with different formulations of Gum Arabic (GA) and Maltodextrin Dextrose (MD) as carrier materials from 40% to 70% w/v. The total phenolic content (TPC), antioxidant activity, and anthocyanins in encapsulates were analysed for the formulations. The findings showed that increased microwave power increased TPC and antioxidant activity (P<0.05). However, adding carrier materials concentration above 60% reduced TPC and the antioxidant activity of microwave-encapsulated anthocyanin from CTFE. The best microwave-assisted encapsulation conditions of CTFE were found at 600 W microwave power with 50% w/v carrier materials GA/MD (ratio 1:1) concentration. The retention of anthocyanins, antioxidant activity, and TPC increased significantly (P<0.05) with increased microwave power and lower concentration of carrier materials. The MAEC approach to enhance the stability of anthocyanin in CTFE presents a high potential to expand its application as a high-value-added natural colourant.

  • Abdin, M., Salama, M. A., Gawad, R. M. A., Fathi, M. A., & Alnadari, F. (2021). Two-steps of gelation system enhanced the stability of Syzygium cumini anthocyanins by encapsulation with sodium alginate, maltodextrin, chitosan and gum Arabic. Journal of Polymers and the Environment, 29, 3679-3692. https://doi.org/10.1007/s10924-021-02140-3

  • Ajila, C. M., Brar, S. K., Verma, M., Tyagi, R. D., & Valéro, J. R. (2011). Solid-state fermentation of apple pomace using Phanerocheate chrysosporium - Liberation and extraction of phenolic antioxidants. Food Chemistry, 126(3), 1071-1080. https://doi.org/10.1016/j.foodchem.2010.11.129

  • Alwi, H., Zaki, N. A. M., Radzi, N. C., Rodhi, M. N. M., Ami, M. A., & Hamid, K. H. K. (2017). Heat effects from far-infrared source towards antioxidant activity in Aquilaria subintegra leaves. Materials Science Forum, 890, 146-149. https://doi.org/10.4028/www.scientific.net/msf.890.146

  • Anthika, B., Kusumocahyo, S. P., & Sutanto, H. (2015). Ultrasonic approach in Clitoria ternatea (Butterfly Pea) extraction in water and extract sterilization by ultrafiltration for eye drop active ingredient, Procedia Chemistry, 16, 237-244. https://doi.org/10.1016/j.proche.2015.12.046

  • Bei, Q., Chen, G., Liu, Y., Zhang, Y., & Wu, Z. (2018). Improving phenolic compositions and bioactivity of oats by enzymatic hydrolysis and microbial fermentation. Journal of Functional Foods, 47, 512-520. https://doi.org/10.1016/j.jff.2018.06.008

  • Bringas-Lantigua, M., Expósito-Molina, I., Reineccius, G. A., López-Hernández, O., & Pino, J. A. (2011). Influence of spray-dryer air temperatures on encapsulated Mandarin oil. Drying Technology, 29(5), 520-526. https://doi.org/10.1080/07373937.2010.513780

  • Hariadi, H., Sunyoto, M., Nurhadi, B., & Karuniawan, A. (2018). Comparison of phytochemical characteristics pigment extract (Antosianin) sweet purple potatoes powder (Ipomea batatas L) and clitoria flower (Clitoria ternatea) as natural dye powder. Journal of Pharmacognosy and Phytochemistry, 7(4), 3420-3429.

  • Jeyaraj, E. J., Lim, Y. Y., & Choo, W. S. (2021). Extraction methods of butterfly pea (Clitoria ternatea) flower and biological activities of its phytochemicals. Journal of Food Science and Technology, 58(6), 2054-2067. https://doi.org/10.1007/s13197-020-04745-3

  • Jyothi, N. V. N., Prasanna, P. M., Sakarkar, S. N., Prabha, K. S., Ramaiah, P. S., & Srawam, H. Y. (2010). Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of Microencapsulation, 27(3), 187-197. https://doi.org/10.3109/02652040903131301

  • Liew, S. Y., Zin, Z. M., Maidin, N. M. M., Mamat, H., & Zainol, M. K. (2020). Effect of the different encapsulation methods on the physicochemical and biological properties of Clitoria ternatea flowers microencapsulated in gelatine. Food Research, 4(4), 1098-1108. https://doi.org/10.26656/fr.2017.4(4).033

  • Marsin, A. M., Jusoh, Y. M. M., Zaidel, D. N. A., Hashim, Z., Yusof, A. H. M., & Muhamad, I. I. (2020). Microwave-assisted Encapsulation of Blue Pea Flower. Chemical Engineering Transactions, 78, 199-204. https://doi.org/10.3303/CET2078034

  • Mazumder, M. A. R., & Ranganathan, T. V. (2020). Encapsulation of isoflavone with milk, maltodextrin and gum acacia improves its stability. Current Research in Food Science, 2, 77-83. https://doi.org/10.1016/j.crfs.2019.12.003.

  • Mozafari, M. R., Khosravi-Darani, K., Borazan, G. G., Cui, J., Pardakhty, A., & Yurdugul, S. (2008). Encapsulation of food ingredients using nanoliposome technology. International Journal of Food Properties, 11(4), 833-844. https://doi.org/10.1080/10942910701648115

  • Mukherjee, P. K., Kumar, V., Kumar, N. S., & Heinrich, M. (2008). The ayurvedic medicine Clitoria ternatea - from traditional use to scientific assessment. Journal of Ethnopharmacology, 120(3), 291-301. https://doi.org/10.1016/j.jep.2008.09.009

  • Nawi, N. M., Muhamad, I. I., & Marsin, A. M. (2015). The physicochemical properties of microwave-assisted encapsulated anthocyanins from Ipomoea batatas as affected by different wall materials. Science and Nutrition, 3(2), 91-99. https://doi.org/10.1002/fsn3.132

  • Ng, Z. X., Yong, P. H., & Lim, S. Y. (2020). Customized drying treatments increased the extraction of phytochemicals and antioxidant activity from economically viable medicinal plants. Industrial Crops and Products, 155, Article 112815. https://doi.org/10.1016/j.indcrop.2020.112815

  • Parthasarathi, S., Ezhilarasi, P. N., Jena, B. S., & Anandharamakrishnan, C. (2013). A comparative study on conventional and microwave-assisted extraction for microencapsulation of Garcinia fruit extract. Food and Bioproducts Processing, 91(2), 103-110. https://doi.org/10.1016/j.fbp.2012.10.004

  • Pasukamonset, P., Kwon, O., & Adisakwattana, S. (2016). Alginate-based encapsulation of polyphenols from Clitoria ternatea petal flower extract enhances stability and biological activity under simulated gastrointestinal conditions. Food Hydrocolloids, 61, 772-779. https://dx.doi.org/10.1016/j.foodhyd.2016.06.039

  • Perez-Grijalva, B., Herrera-Sotero, M., Mora-Escobedo, R., Zebadúa-García, J. C., Silva-Hernández, E., Oliart-Ros, R., Pérez-Cruz, C., & Guzmán-Gerónimo, R. (2018). Effect of microwaves and ultrasound on bioactive compounds and microbiological quality of blackberry juice. LWT, 87, 47-53. https://doi.org/10.1016/j.lwt.2017.08.059

  • Pieczykolan, E., & Kurek, M. A. (2019). Use of guar gum, gum arabic, pectin, beta-glucan and inulin for microencapsulation of anthocyanins from chokeberry. International Journal of Biological Macromolecules, 129, 665-671, https://doi.org/10.1016/j.ijbiomac.2019.02.073

  • Sablania, V., & Bosco, S. J. D. (2018). Optimization of spray drying parameters for Murraya koenigii (Linn) leaves extract using response surface methodology. Powder Technology, 335, 35-41. https://doi.org/10.1016/j.powtec.2018.05.009

  • Salleh, N. A. M., & Pa’ee, F. (2021). Effect of various immersion time and water temperature on seed germination of Clitoria ternatea and Momordica charantia. Pertanika Journal of Tropical Agricultural Science, 44(4), 745-753. https://doi.org/10.47836/pjtas.44.4.03

  • Sulaiman, I. S. C., Basri, M., Masoumi, H. R. F., Chee, W. J., Ashari, S. E., & Ismail, M. (2017). Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the antiradical activity of Clinacanthus nutas Lindau leaves by response surface methodology. Chemistry Central Journal, 11, Article 54. https://doi.org/10.1186/s13065-017-0285-1

  • Swathi, K. P., Jayaram, S., Sugumar, D., & Rymbai, E. (2021). Evaluation of anti-inflammatory and anti-arthritic property of ethanolic extract of Clitoria ternatea. Chinese Herbal Medicines, 13, 243-249. https://doi.org/10.1016/j.chmed.2020.11.004

  • Tonon, R.V., Brabet, C., & Hubinger, M.D. (2010). Anthocyanin stability and antioxidant activity of spray-dried açai (Euterpe oleracea Mart.) juice produced with different carrier agents. Food Research International, 43(3), 907-914. https://doi.org/10.1016/j.foodres.2009.12.013

  • Verma, P. R., Itankar, P. R., & Arora, S. K. (2013). Evaluation of antidiabetic antihyperlipidemic and pancreatic regeneration, potential of aerial parts of Clitoria ternatea. Revista Brasileira de Farmacognosia, 23(5), 819-829. https://doi.org/10.1590/S0102-695X2013000500015

  • Yadav, K., Bajaj, R. K., Mandal, S., & Mann, B. (2020). Encapsulation of grape seed extract phenolics using whey protein concentrate, maltodextrin and gum arabica blends. Journal of Food Science & Technology, 57(2), 426-434. https://doi.org/10.1007/s13197-019-04070-4

  • Zeng, S., Wang, B., Lv, W., & Wu, Y. (2023). Effects of microwave power and hot air temperature on the physicochemical properties of dried ginger (Zingiber officinale) using microwave hot-air rolling drying, Food Chemistry, 404, Article 134741. https://doi.org/10.1016/j.foodchem.2022.134741

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JST-3786-2022

Download Full Article PDF

Share this article

Related Articles