PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 33 (1) Jan. 2025 / JST-5081-2024

 

Inorganic Phosphorus Fractions and Sorption Capacity of Sediments Correlated with Physicochemical Parameters of Water in Langat River, Selangor Malaysia

Bilyaminu Garba Jega, Muskhazli Mustafa, Micheal Charles Rajaram, Nor Azwady Abd Aziz, Wan Mohd Syazwan Wan Solahudin, Noor Haza Fazlin Hashim and Bashirah Mohd Fazli

Pertanika Journal of Science & Technology, Volume 33, Issue 1, January 2025

DOI: https://doi.org/10.47836/pjst.33.1.16

Keywords: Anthropogenic, adsorption, correlation, fractions, isotherm

Published on: 23 January 2025

This study investigates the physicochemical parameters of water, their association with inorganic phosphate fractions, and the sorption capacity of sediments. Water and sediment samples were collected from upstream, midstream, and downstream sections between November 2022 and June 2023. The water samples were analysed according to the American Public Health Association (APHA) guidelines for physicochemical parameters. Inorganic phosphate fractions in the sediments were quantified using the molybdenum blue colourimetric method. Sediment phosphate sorption capacity was assessed by measuring the resulting filtrate and applying regression correlation and Langmuir isotherm models to determine the relationships among the sediment samples. Sediment analysis of inorganic phosphorous fractions revealed varying percentages of Ca-P (32.6%), Rs-P (38.3%), and Fe-P (48.4%) dominating the upstream, midstream, and downstream sections, respectively. Sediment phosphate adsorption varied between sections (upstream: 4.00 to 18.21 mg/g vs. midstream: 4.36 to 21.10 mg/g vs downstream: 4.00 to 12.98 mg/g), with no significant differences between streams at specific phosphate concentrations. However, all the sections displayed a saturation point of approximately 20–25 mg/l. The Langmuir isotherm parameters accurately described P adsorption onto Langat River sediments, as indicated by the moderately high R2 values for Qmax and RL. The downstream section of the Langat River had elevated levels of EC, COD and SRP parameters and Ex-P, Al-P, Fe-P, and Ca-P fractions, except for the Rs-P fraction that dominated the midstream section, indicating collective effects of anthropogenic activities. Therefore, strict regulations to improve wastewater treatment and promote sustainable wastewater management are essential for reducing inorganic phosphorus pollution in the Langat River and protecting water quality.

  • Abidin, M. Z, Kutty, A. A., Lihan, T., & Zakaria, N. A. (2018). Hydrological change effects on Sungai Langat water quality. Sains Malaysiana, 47, 1401–1411. https://doi.org/10.17576/jsm-2018-4707-07

    Ahmed, M. F., Mokhtar, M. B., Alam, L., Mohamed, C. A. R., & Ta, G. C. (2019). Non-carcinogenic health risk assessment of aluminium ingestion via drinking water in Malaysia. Exposure and Health, 11, 167–180. https://doi.org/10.1007/s12403-019-00297-w

    Ahmed, M. F., Mokhtar, M. B., Lim, C. K., & Majid, N. A. (2022). Identification of water pollution sources for better Langat River basin management in Malaysia. Water, 14, 1904-1924. https://doi.org/10.3390/w14121904

    Al-Odaini, N. A., Zakaria, M. P., Yaziz, M. I., Surif, S., & Abdulghani, M. (2013). The occurrence of human pharmaceuticals in wastewater effluents and surface water of Langat River and its tributaries, Malaysia. International Journal of Environmental Analytical Chemistry, 93, 245–264. https://doi.org/10.1080/03067319.2011.592949

    Amin, I., Ercan, A., Ishida, K., Kavvas, M., Chen, Z., & Jang, S. (2019). Impacts of climate change on the hydroclimate of Peninsular Malaysia. Water, 11(9), Article 1798. https://doi.org/10.3390/w11091798

    APHA. (2005). Standards methods for the examination of water and wastewater (21st ed.). American Public Health Association.

    Aris, A. Z., Lim, W. Y., & Looi, L. J. (2015). Natural and anthropogenic determinants of freshwater ecosystem deterioration. In M. Ramkumar, K. Kumaraswamy & R. Mohanraj (Eds.), Environmental Management of River Basin Ecosystems (pp. 455–476). Springer. https://doi.org/10.1007/978-3-319-13425-3_21

    Azam, H. M., Alam, S. T., Hasan, M., Yameogo, D. D. S., Kannan, A. D., Rahman, A., & Kwon, M. J. (2019). Phosphorous in the environment: Characteristics with distribution and effects, removal mechanisms, treatment technologies, and factors affecting recovery as minerals in natural and engineered systems. Environmental Science and Pollution Research, 26, 20183–20207. https://doi.org/10.1007/s11356-019-04732-y

    Azari, M., Moradi, H., Saghafian, B., & Faramarzi, M. (2015). Climate change impacts on streamflow and sediment yield in the north of Iran. Hydrological Sciences Journal, 61(1), 123-133. https://doi.org/10.1080/02626667.2014.967695

    Azrina, M. Z., Yap, C. K., Ismail, A. R., Ismail, A., & Tan, S. G. (2006). Anthropogenic impacts on the distribution and biodiversity of benthic macroinvertebrates and water quality of the Langat River, Peninsular Malaysia. Ecotoxicology and Environmental Safety, 64, 337–347. https://doi.org/10.1016/j.ecoenv.2005.04.003

    Baggio, G., Qadir, M., & Smakhtin, V. (2021). Freshwater availability status across countries for human and ecosystem needs. Science of The Total Environment, 792, Article 148230. https://doi.org/10.1016/j.scitotenv.2021.148230

    Basheer, O. A., Hanafiah, M. M., & Abdulhasan, J. M. (2017). A study on water quality from Langat River, Selangor. Acta Scientifica Malaysia, 1, 01–04. https://doi.org/10.26480/asm.02.2017.01.04

    Batalla, R. J., & Vericat, D. (2008). Hydrological and sediment transport dynamics of flushing flows: Implications for management in large Mediterranean Rivers. River Research and Applications, 25, 297–314. https://doi.org/10.1002/rra.1160

    Beltaos, S., & Burrell, B. C. (2016). Characteristics of suspended sediment and metal transport during ice breakup, Saint John River, Canada. Cold Regions Science and Technology, 123, 164–176. https://doi.org/10.1016/j.coldregions.2015.12.009

    Billah, M., Khan, M., Bano, A., Hassan, T. U., Munir, A., & Gurmani, A. R. (2019). Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiology Journal, 36, 904–916. https://doi.org/10.1080/01490451.2019.1654043

    Bing, H., Wu, Y., Zhang, Y., & Yang, X. (2013). Possible factors controlling the distribution of phosphorus in the sediment of Longgan Lake, middle reach of Yangtze River, China. Environmental Earth Sciences, 71, 4553–4564. https://doi.org/10.1007/s12665-013-2848-3

    Bol, R., Gruau, G., Mellander, P. E., Dupas, R., Bechmann, M., Skarbøvik, E., Bieroza, M., Djodjic, F., Glendell, M., Jordan, P., Van der Grift, B., Rode, M., Smolders, E., Verbeeck, M., Gu, S., Klumpp, E., Pohle, I., Fresne, M., & Gascuel-Odoux, C. (2018). Challenges of reducing phosphorus based water eutrophication in the agricultural landscapes of Northwest Europe. Frontiers in Marine Science, 5, Article 275. https://doi.org/10.3389/fmars.2018.00276

    Bozorg-Haddad, O., Delpasand, M., & Loáiciga, H. A. (2021). Water quality, hygiene, and health. In O. Bozorg-Haddad (Ed.), Economical, Political, and Social Issues in Water Resources (pp. 217–257). Elsevier. https://doi.org/10.1016/b978-0-323-90567-1.00008-5

    Chapra, S. C., Camacho, L. A., & McBride, G. B. (2021). Impact of global warming on dissolved oxygen and BOD assimilative capacity of the world’s rivers: Modeling Analysis. Water, 13, Article 2408. https://doi.org/10.3390/w13172408

    Chen, Q., Chen, J., Wang, J., Guo, J., Jin, Z., Yu, P., & Ma, Z. (2019). In situ, high-resolution evidence of phosphorus release from sediments controlled by the reductive dissolution of iron-bound phosphorus in a deep reservoir, southwestern China. Science of The Total Environment, 666, 39–45. https://doi.org/10.1016/j.scitotenv.2019.02.194

    Chuang, C. W., Huang, W. S., Liu, Y. Y., Hsieh, C. Y., & Chen, T. C. (2021). Fluorescence properties of the air- and freeze-drying treatment on size-fractioned sediment organic matter. Applied Sciences, 11, Article 8220. https://doi.org/10.3390/app11178220

    Costa, A., Molnár, P., Stütenbecker, L., Bakker, M., Silva, T., Schlunegger, F., & Girardclos, S. (2018). Temperature signal in suspended sediment export from an alpine catchment. Hydrology and Earth System Sciences, 22(1), 509-528. https://doi.org/10.5194/hess-22-509-2018

    Cui, Y., Xiao, R., Xie, Y., & Zhang, M. (2018). Phosphorus fraction and phosphate sorption-release characteristics of the wetland sediments in the Yellow River Delta. Physics and Chemistry of the Earth, Parts A/B/C, 103, 19–27. https://doi.org/10.1016/j.pce.2017.06.005

    Dadi, T., Schultze, M., Kong, X., Seewald, M., Rinke, K., & Friese, K. (2023). Sudden eutrophication of an aluminum sulphate treated lake due to abrupt increase of internal phosphorus loading after three decades of mesotrophy. Water Research, 235, Article 119824. https://doi.org/10.1016/j.watres.2023.119824

    Del Bubba, M., Arias, C. A., & Brix, H. (2003). Phosphorus adsorption maximum of sands for use as media in subsurface flow constructed reed beds as measured by the Langmuir isotherm. Water Research, 37, 3390–3400. https://doi.org/10.1016/s0043-1354(03)00231-8

    DOE. (2012). Malaysia: Environmental Quality Act report. Department of Environment, Ministry of Science, Technology and the Environment, Putrajaya, Malaysia.

    Ebrahimian, M., Nuruddin, A. A., Soom, M. A. M., Sood, A. M., Neng, L. J., & Galavi, H. (2018). Trend analysis of major hydroclimatic variables in the Langat River basin, Malaysia. Singapore Journal of Tropical Geography, 39, 192–214. https://doi.org/10.1111/sjtg.12234

    Emelko, M. B., Stone, M., Silins, U., Allin, D., Collins, A. L., Williams, C. H. S., Martens, A. M., & Bladon, K. D. (2015). Sediment‐phosphorus dynamics can shift aquatic ecology and cause downstream legacy effects after wildfire in large river systems. Global Change Biology, 22, 1168–1184. https://doi.org/10.1111/gcb.13073

    Flower, H., Rains, M., Taşcı, Y., Zhang, J. Z., Trout, K., Lewis, D., Das, A., & Dalton, R. (2022). Why is calcite a strong phosphorus sink in freshwater? Investigating the adsorption mechanism using batch experiments and surface complexation modeling. Chemosphere, 286, Article 131596. https://doi.org/10.1016/j.chemosphere.2021.131596

    Gao, L., Li, R., Liang, Z., Yan, C., Zhu, A., Li, S., Yang, Z., He, H., Gan, H., & Chen, J. (2020). Remobilization mechanism and release characteristics of phosphorus in saline sediments from the Pearl River Estuary (PRE), South China, based on high-resolution measurements. Science of The Total Environment, 703, Article 134411. https://doi.org/10.1016/j.scitotenv.2019.134411

    Giri, S. (2021). Water quality prospective in the twenty first century: Status of water quality in major river basins, contemporary strategies and impediments: A review. Environmental Pollution, 271, Article 116332. https://doi.org/10.1016/j.envpol.2020.116332

    Hafeznezami, S., Zimmer-Faust, A. G., Dunne, A., Tran, T., Yang, C., Lam, J. R., Reynolds, M. D., Davis, J. A., & Jay, J. A. (2016). Adsorption and desorption of arsenate on sandy sediments from contaminated and uncontaminated saturated zones: Kinetic and equilibrium modeling. Environmental Pollution, 215, 290–301. https://doi.org/10.1016/j.envpol.2016.05.029

    Haider, H., Ali, W., & Haydar, S. (2012). Evaluation of various relationships of reaeration rate coefficient for modeling dissolved oxygen in a river with extreme flow variations in Pakistan. Hydrological Processes, 27(26), 3949–3963. https://doi.org/10.1002/hyp.9528

    Han, C., Qin, Y., Zheng, B., Ma, Y., Yang, C., Liu, Z., Zhuang, D., & Zhao, Y. (2020). Geochemistry of phosphorus release along transect of sediments from a tributary backwater zone in the Three Gorges Reservoir. Science of The Total Environment, 722, Article 136964. https://doi.org/10.1016/j.scitotenv.2020.136964

    Han, H., Yang, J., Ma, G., Liu, Y., Zhang, L., Chen, S., & Shu-liang, M. (2020). Effects of land-use and climate change on sediment and nutrient retention in Guizhou, China. Ecosystem Health and Sustainability, 6(1), Article 1810592. https://doi.org/10.1080/20964129.2020.1810592

    Han, X., Pan, B., Liu, Z., Hou, B., Li, D., & Li, M. (2022). The relationship among water quality and hydrochemical indices reveals nutrient dynamics and sources in the most sediment-laden river across the continent. Journal of Environmental Chemical Engineering, 10(1), Article 107110. https://doi.org/10.1016/j.jece.2021.107110

    Haque, S. E. (2021). How effective are existing phosphorus management strategies in mitigating surface water quality problems in the US. Sustainability, 13(12), Article 6565. https://doi.org/10.3390/su13126565

    Helard, D., Indah, S., & Ardon, A. (2019). Analysis of spatial variation of phosphates in Batang Arau river, Indonesia. MATEC Web of Conferences, 276, Article 06028. https://doi.org/10.1051/matecconf/201927606028

    Hoffman, A. R., Armstrong, D. E., Lathrop, R. C., & Penn, M. R. (2009). Characteristics and influence of phosphorus accumulated in the bed sediments of a stream located in an agricultural watershed. Aquatic Geochemistry, 15, 371–389. https://doi.org/10.1007/s10498-008-9043-2

    Howell, J. A. (2010). The distribution of phosphorus in sediment and water downstream from a sewage treatment works. Bioscience Horizons, 3, 113–123. https://doi.org/10.1093/biohorizons/hzq015

    Huang, G., Liu, C., Zhang, Y., & Chen, Z. (2020). Groundwater is important for the geochemical cycling of phosphorus in rapidly urbanized areas: a case study in the Pearl River Delta. Environmental Pollution, 260, Article 114079. https://doi.org/10.1016/j.envpol.2020.114079

    Ibrahim, T. N. B. T., Othman, F., Mmahmood, N. Z., & Abunama, T. (2021). Seasonal effects on spatial variations of surface water quality in a tropical river receiving anthropogenic influences. Sains Malaysiana, 50(3), 571–593. https://doi.org/10.17576/jsm-2021-5003-02

    Jalali, M., & Peikam, E. N. (2013). Phosphorus sorption–desorption behaviour of riverbed sediments in the Abshineh river, Hamedan, Iran, related to their composition. Environmental Monitoring and Assessment, 185, 537–552. https://doi.org/10.1007/s10661-012-2573-5

    Ji, N., Liu, Y., Wang, S., Wu, Z., & Li, H. (2022). Buffering effect of suspended particulate matter on phosphorus cycling during transport from rivers to lakes. Water Research, 216, Article 118350. https://doi.org/10.1016/j.watres.2022.118350

    Jiao, N., Liu, J., Edwards, B., Lv, Z., Cai, R., Liu, Y., Xiao, X., Wang, J., Jiao, F., Wang, R., Huang, X., Guo, B., Sun, J., Zhang, R., Zhang, Y., Tang, K., Zheng, Q., Azam, F., Batt, J., & Legendre, L. (2021). Correcting a major error in assessing organic carbon pollution in natural waters. Science Advances, 7(16), Article eabc7318. https://doi.org/10.1126/sciadv.abc7318

    Juahir, H., Zain, S. M., Yusoff, M. K., Hanidza, T. I. T., Armi, A. S. M., Toriman, M. E., & Mokhtar, M. (2011). Spatial water quality assessment of Langat River Basin (Malaysia) using environmetric techniques. Environmental Monitoring and Assessment, 173, 625–641. https://doi.org/10.1007/s10661-010-1411-x

    Kadhum, S. A., Ishak, M. Y., Zulkifli, S. Z., & Hashim, R. binti. (2015). Evaluation of the status and distributions of heavy metal pollution in surface sediments of the Langat River Basin in Selangor Malaysia. Marine Pollution Bulletin, 101, 391–396. https://doi.org/10.1016/j.marpolbul.2015.10.012

    Kakade, A., Salama, E. S., Han, H., Zheng, Y., Kulshrestha, S., Jalalah, M., Harraz, F. A., Alsareii, S. A., & Li, X. (2021). World eutrophic pollution of lake and river: Biotreatment potential and future perspectives. Environmental Technology and Innovation, 23, Article 101604. https://doi.org/10.1016/j.eti.2021.101604

    Kalkhoff, S. J., Hubbard, L., Tomer, M. D., & James, D. E. (2016). Effect of variable annual precipitation and nutrient input on nitrogen and phosphorus transport from two midwestern agricultural watersheds. Science of the Total Environment, 559, 53-62. https://doi.org/10.1016/j.scitotenv.2016.03.127

    Kaushal, S. S., Likens, G. E., Pace, M. L., Reimer, J. E., Maas, C. M., Galella, J. G., Utz, R. M., Duan, S., Kryger, J. R., Yaculak, A. M., Boger, W. L., Bailey, N. W., Haq, S., Wood, K. L., Wessel, B. M., Park, C. E., Collison, D. C., Aisin, B. Y. ’aaqob I., Gedeon, T. M., & Woglo, S. A. (2021). Freshwater salinization syndrome: From emerging global problems to managing risks. Biogeochemistry, 154, 255–292. https://doi.org/10.1007/s10533-021-00784-w

    Khalil, M. M., Aboueldahab, S. M., Abdel-Raheem, K. H. M., Ahmed, M., Ahmed, M. S., & Abdelhady, A. A. (2023). Mixed agricultural, industrial, and domestic drainage water discharge poses a massive strain on freshwater ecosystems: a case from the Nile River in Upper Egypt. Environmental Science and Pollution Research, 30, 122642–122662. https://doi.org/10.1007/s11356-023-30994-8

    Lee, S. T., Lee, Y. H., Hong, K. P., Lee, S. D., Kim, M. K., Park, J. H., & Seo, D. C. (2013). Comparison of BOD, COD, TOC and DOC as the indicator of organic matter pollution of agricultural surface water in Gyeongnam Province. Korean Journal of Soil Science and Fertilizer, 46, 327–332. https://doi.org/10.7745/kjssf.2013.46.5.327

    LUAS. (2015). Sungai Langat Basin Management Plan 2015-2020. Lembaga Urus Air Selangor, Malaysia.

    León, J. G., Pedrozo, F. L., & Temporetti, P. F. (2017). Phosphorus fractions and sorption dynamics in the sediments of two Ca-SO4 water reservoirs in the central Argentine Andes. International Journal of Sediment Research, 32, 442–451. https://doi.org/10.1016/j.ijsrc.2017.03.002

    Liao, R., Hu, J., Li, Y., & Li, S. (2020). Phosphorus transport in riverbed sediments and related adsorption and desorption characteristics in the Beiyun River, China. Environmental Pollution, 266, Article 115153. https://doi.org/10.1016/j.envpol.2020.115153

    Lim, W. Y., Aris, A. Z., & Ismail, T. H. T. (2013a). Spatial geochemical distribution and sources of heavy metals in the sediment of Langat River, Western Peninsular Malaysia. Environmental Forensics, 14(2), 133-145.

    Lim, W. Y., Aris, A. Z., & Zakaria, M. P. (2013b). Spatial variability of metals in surface water and sediment in the Langat River and geochemical factors that influence their water-sediment interactions. The Scientific World Journal, 2012, 1–14. https://doi.org/10.1100/2012/652150.

    Lin, Y., Gross, A., O’Connell, C. S., & Silver, W. L. (2020). Anoxic conditions maintained high phosphorus sorption in humid tropical forest soils. Biogeosciences, 17, 89–101. https://doi.org/10.5194/bg-17-89-2020

    Loi, J. X., Chua, A. S. M., Rabuni, M. F., Tan, C. K., Lai, S. H., Takemura, Y., & Syutsubo, K. (2022). Water quality assessment and pollution threat to safe water supply for three river basins in Malaysia. Science of The Total Environment, 832, Article 155067.

    Ma, Y., Tie, Z., Zhou, M., Wang, N., Cao, X., & Xie, Y. (2016). Accurate determination of low-level chemical oxygen demand using a multistep chemical oxidation digestion process for treating drinking water samples. Analytical Methods, 8, 3839–3846. https://doi.org/10.1039/c6ay00277c

    Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36. https://doi.org/10.1016/s0003-2670(00)88444-5

    Ni, Z., Wang, S., & Wang, Y. (2016). Characteristics of bioavailable organic phosphorus in sediment and its contribution to lake eutrophication in China. Environmental Pollution, 219, 537–544. https://doi.org/10.1016/j.envpol.2016.05.087

    Nuruzzaman, M., Al-Mamun, A., & Salleh, M. N. (2017). Experimenting biochemical oxygen demand decay rates of Malaysian river water in a laboratory flume. Environmental Engineering Research, 23, 99–106. https://doi.org/10.4491/eer.2017.048

    Orihel, D. M., Baulch, H. M., Casson, N. J., North, R. L., Parsons, C. T., Seckar, D. C. M., & Venkiteswaran, J. J. (2017). Internal phosphorus loading in Canadian fresh waters: A critical review and data analysis. Canadian Journal of Fisheries and Aquatic Sciences, 74, 2005–2029. https://doi.org/10.1139/cjfas-2016-0500

    Pardo, P., López-Sánchez, J. F., & Rauret, G. (1998). Characterisation, validation, and comparison of three methods for the extraction of phosphate from sediments. Analytica Chimica Acta, 376, 183–195. https://doi.org/10.1016/s0003-2670(98)00532-7

    Pu, J., Wang, S., Ni, Z., Wu, Y., Liu, X., Wu, T., & Wu, H. (2021). Implications of phosphorus partitioning at the suspended particle-water interface for lake eutrophication in China’s largest freshwater lake, Poyang Lake. Chemosphere, 263, Article 128334. https://doi.org/10.1016/j.chemosphere.2020.128334

    Reusser, J. E., Piccolo, A., Vinci, G., Savarese, C., Cangemi, S., Cozzolino, V., Verel, R., Frossard, E., & McLaren, T. I. (2023). Phosphorus species in sequentially extracted soil organic matter fractions. Geoderma, 429, Article 116227. https://doi.org/10.1016/j.geoderma.2022.116227

    Roy, K., Karim, M. R., Akter, F., Islam, M. S., Ahmed, K., Rahman, M., Datta, D. K., & Khan, M. S. A. (2018). Hydrochemistry, water quality and land use signatures in an ephemeral tidal river: implications in water management in the southwestern coastal region of Bangladesh. Applied Water Science, 8, 1-16. https://doi.org/10.1007/s13201-018-0706-x

    Roy, M., Shamim, F., & Chatterjee, S. (2021). Evaluation of physicochemical and biological parameters on the water quality of Shilabati River, west Bengal, India. Water Science, 35(1), 71-81. https://doi.org/10.1080/23570008.2021.1928902

    Saha, A., Jesna, P. K., Ramya, V. L., Mol, S. S., Panikkar, P., Vijaykumar, M. E., Sarkar, U. K., & Das, B. K. (2022). Phosphorus fractions in the sediment of a tropical reservoir, India: Implications for pollution source identification and eutrophication. Environmental Geochemistry and Health, 44, 749–769. https://doi.org/10.1007/s10653-021-00985-0

    Sha, J., Xiong, H., Li, C., Lu, Z., Zhang, J., Zhong, H., Zhang, W., & Yan, B. (2021). Harmful algal blooms and their eco-environmental indication. Chemosphere, 274, Article 129912. https://doi.org/10.1016/j.chemosphere.2021.129912

    Shafie, N. A., Aris, A. Z., & Puad, N. H. A. (2013). Influential factors on the levels of cation exchange capacity in sediment at Langat River. Arabian Journal of Geosciences, 6, 3049–3058. https://doi.org/10.1007/s12517-012-0563-0

    Simonetti, V. C., Frascareli, D., Gontijo, E. S. J., Melo, D. S., Friese, K., Silva, D. C. C., & Rosa, A. H. (2019). Water quality indices as a tool for evaluating water quality and effects of land use in a tropical catchment. International Journal of River Basin Management, 19, 157–168. https://doi.org/10.1080/15715124.2019.1672706

    Smits, A. P., Ruffing, C. M., Royer, T. V., Appling, A. P., Griffiths, N. A., Bellmore, R. A., Scheuerell, M. D., Harms, T. K., & Jones, J. B. (2019). Detecting signals of large‐scale climate phenomena in discharge and nutrient loads in the Mississippi Atchafalaya river basin. Geophysical Research Letters, 46(7), 3791-3801. https://doi.org/10.1029/2018gl081166

    Tadini, A. M., Nicolodelli, G., Marangoni, B. S., Mounier, S., Montes, C. R., & Milori, D. M. B. P. (2019). Evaluation of the roles of metals and humic fractions in the podzolization of soils from the Amazon region using two analytical spectroscopy techniques. Microchemical Journal, 144, 454–460. https://doi.org/10.1016/j.microc.2018.10.009

    Tang, X., Wu, M., Dai, X., & Chai, P. (2014). Phosphorus storage dynamics and adsorption characteristics for sediment from a drinking water source reservoir and its relation with sediment compositions. Ecological Engineering, 64, 276–284. https://doi.org/10.1016/j.ecoleng.2014.01.005

    Van Den Broeck, N., Moutin, T., Rodier, M., & Le Bouteiller, A. (2004). Seasonal variations of phosphate availability in the SW Pacific Ocean near New Caledonia. Marine Ecology Progress Series, 268, 1–12. https://doi.org/10.3354/meps268001

    Vigiak, O., Grizzetti, B., Udias-Moinelo, A., Zanni, M., Dorati, C., Bouraoui, F., & Pistocchi, A. (2019). Predicting biochemical oxygen demand in European freshwater bodies. Science of The Total Environment, 666, 1089–1105. https://doi.org/10.1016/j.scitotenv.2019.02.252

    Wang, H., & Ji, Y. (2024). Study on the technology of sterilization water for injection in celine bottle. BIO Web of Conferences, 111, Article 01015. https://doi.org/10.1051/bioconf/202411101015

    Wang, T., Liu, J., Xu, S., Qin, G., Sun, Y., & Wang, F. (2017). Spatial distribution, adsorption/release characteristics, and environment influence of phosphorus on sediment in reservoir. Water, 9, Article 724. https://doi.org/10.3390/w9090724

    Wang, W., Wang, H., Feng, Y., Wang, L., Xiao, X., Xi, Y., Luo, X., Sun, R., Ye, X., Huang, Y., Zhang, Z., & Cui, Z. (2016). Consistent responses of the microbial community structure to organic farming along the middle and lower reaches of the Yangtze River. Scientific Reports, 6, Article 35046. https://doi.org/10.1038/srep35046

    Welch, E. B., Gibbons, H. L., Brattebo, S. K., & Corson-Rikert, H. A. (2017). Distribution of aluminum and phosphorus fractions following alum treatments in a large shallow lake. Lake and Reservoir Management, 33, 198–204. https://doi.org/10.1080/10402381.2016.1276653

    Yang, J., Liang, J., Yang, G., Feng, Y., Ren, G., Ren, C., Han, X., & Wang, X. (2020). Characteristics of non-point source pollution under different land use types. Sustainability, 12(5), Article 2012. https://doi.org/10.3390/su12052012

    Yap, C. K. (2013). Variations of electrical conductivity between upstream and downstream of Langat River, Malaysia: Its significance as a single indicator of water quality deterioration. Pertanika Journal of Tropical Agricultural Science, 36, 299–309.

    Yin, H., Du, Y., Kong, M., & Liu, C. (2017). Interactions of riverine suspended particulate matter with phosphorus inactivation agents across sediment-water interface and the implications for eutrophic lake restoration. Chemical Engineering Journal, 327, 150–161. https://doi.org/10.1016/j.cej.2017.06.099

    Yuan, S., Tang, H., Xiao, Y., Xia, Y., Melching, C., & Li, Z. (2019). Phosphorus contamination of the surface sediment at a river confluence. Journal of Hydrology, 573, 568–580. https://doi.org/10.1016/j.jhydrol.2019.02.036

    Yusof, N. F., Lihan, T., Idris, W. M. R., Rahman, Z. A., Mustapha, M. A., & Yusof, M. A. W. (2021). Spatially distributed soil losses and sediment yield: A case study of Langat watershed, Selangor, Malaysia. Journal of Asian Earth Sciences, 212, Article 104742. https://doi.org/10.1016/j.jseaes.2021.104742

    Zainol, N. F. M., Zainuddin, A. H., Looi, L. J., Aris, A. Z., Isa, N. M., Sefie, A., & Yusof, K. M. K. K. (2021). Spatial analysis of groundwater hydrochemistry through integrated multivariate analysis: A case study in the urbanized Langat Basin, Malaysia. International Journal of Environmental Research and Public Health, 18, Article 5733. https://doi.org/10.3390/ijerph18115733

    Zhang, H. (2009). Fractionation of soil phosphorus. In J. L. Kovar & G. M. Pierzynski (Eds.), Methods of Phosphorus Analysis for Soils, Sediments, Residuals and Waters (2nd ed.) (pp 50-60). Virginia Tech University.

    Zhang, S., Li, Z., Lin, X., & Zhang, C. (2019). Assessment of climate change and associated vegetation cover change on watershed-scale runoff and sediment yield. Water, 11(7), Article 1373. https://doi.org/10.3390/w11071373

    Zhou, B., Fu, X., Wu, B., He, J., Vogt, R. D., Yu, D., Yue, F., & Chai, M. (2021). Phosphorus release from sediments in a raw water reservoir with reduced allochthonous input. Water, 13, Article 1983. https://doi.org/10.3390/w13141983

    Zhou, Q., Gibson, C. E., & Zhu, Y. (2001). Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK. Chemosphere, 42, 221–225. https://doi.org/10.1016/s0045-6535(00)00129-6

    Zubir, M. R. M, Osman, R., & Saim, N. (2016). Chemometric analysis of selected organic contaminants in surface water of Langat River Basin. Malaysian Journal of Analytical Science, 20(2), 278–287. https://doi.org/10.17576/mjas-2016-2002-08

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-5081-2024

Download Full Article PDF

Share this article

Related Articles