PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 33 (1) Jan. 2025 / JST-5126-2024

 

Synthesis and Assessment of Metal-Organic Frameworks (MOFs) Adsorbents for CO2 Capture: A Comparative work of the CO2 Adsorption Capability of Mono- and Bimetal-based MOFs Adsorbents

Nor Khonisah Daud and Nurul Huda Insyirah Muhammad Najib

Pertanika Journal of Science & Technology, Volume 33, Issue 1, January 2025

DOI: https://doi.org/10.47836/pjst.33.1.20

Keywords: Bimetal-based MOFs, CO2 adsorption, metal-organic frameworks, mono-based MOFs, solid adsorbent

Published on: 23 January 2025

Adsorption utilising porous solid adsorbent has been considered a feasible option for conventional CO2 absorption over the past few decades. As a preliminary investigation towards obtaining Metal-Organic Frameworks (MOFs) adsorbent for CO2 capture, the CO2 adsorption efficiency using mono- and bimetal-based MOFs was assessed in this study. Among the numerous MOFs, Mg-MOF-74 exhibits the best CO2 uptake at low pressures because of its open metal sites. A strategy to incorporate Zn in Mg-based MOF as a co-metal node is required to enhance the CO2 adsorption performance of solid adsorbent. Selecting Zn as a metal node in MOF synthesis allows for the creation of stable, versatile, and functional materials for CO2 adsorption. Therefore, combining several metals in a structure to develop a new MOF with an improved gas uptake is quite a useful approach to further harness the immense potential of MOFs. This study aims to compare the performance of mono- and bimetallic-MOFs and select the most suitable adsorbent for CO2 capture. The performance of CO2 adsorption was conducted using three parameters: the effect of metal loading on MOFs, pressure (1–5 bar) and adsorbent dosage (0.2–0.5g). Based on the characterisation findings, the studies confirm the formation of Mg-MOF-74, Zn-MOF and 50wt.%Zn/50wt.%Mg-MOF. Overall, it was found that the bimetal adsorbent with 50 wt.%Zn/50wt.%Mg-MOF displayed the highest CO2 adsorption capacity (323 mgCO2/gadsorbent) when compared to the monometallic MOFs (Zn-MOF (134mgCO2/gadsorbent) and Mg-MOF-74) (122 mgCO2/gadsorbent) indicating a 50% increase in adsorption capacity over monometallic MOFs.

  • Abednatanzi, S., Derakhshandeh, P. G., Depauw, H., Coudert, F. X., Vrielinck, H., Van Der Voort, P., & Leus, K. (2019). Mixed-metal metal–organic frameworks. Chemical Society Reviews, 48(9), 2535-2565. https://doi.org/10.1039/C8CS00337H

    Abooali, D., Soleimani, R., & Rezaei-Yazdi, A. (2020). Modeling CO2 absorption in aqueous solutions of DEA, MDEA, and DEA+ MDEA based on intelligent methods. Separation Science and Technology, 55(4), 697-707. https://doi.org/10.1080/01496395.2019.1575415

    Bagheri, N., Khataee, A., Habibi, B., & Hassanzadeh, J. (2018). Mimetic ag nanoparticle/zn-based MOF nanocomposite (AgNPs@ZnMOF) capped with molecularly imprinted polymer for the selective detection of patulin. Talanta, 179, 710-718. https://doi.org/10.1016/j.talanta.2017.12.009

    Bao, Z., Yu, L., Dou, T., Gong, Y., Zhang, Q., Ren, Q., Lu, X., & Deng, S. (2011). Adsorption equilibria of CO2, CH4, N2, O2, and Ar on high silica zeolites. Journal of Chemical & Engineering Data, 56(11), 4017-4023. https://doi.org/10.1021/je200394p

    Bao, Z., Yu, L., Ren, Q., Lu, X., & Deng, S. (2011). Adsorption of CO2 and CH4 on a magnesium-based metal organic framework. Journal of colloid and interface science, 353(2), 549-556. https://doi.org/10.1016/j.jcis.2010.09.065

    Barea, E., Montoro, C., & Navarro, J. A. R. (2014). Toxic gas removal–metal–organic frameworks for the capture and degradation of toxic gases and vapours. Chemical Society Reviews, 43(16), 5419-5430. https://doi.org/10.1039/C3CS60475F

    Botas, J. A., Calleja, G., Sanchez-Sanchez, M., & Orcajo, M. G. (2011). Effect of Zn/Co ratio in MOF-74 type materials containing exposed metal sites on their hydrogen adsorption behaviour and on their band gap energy. International Journal of Hydrogen Energy, 36(17), 10834-10844. https://doi.org/10.1016/j.ijhydene.2011.05.187

    Campbell, J., & Tokay, B. (2017). Controlling the size and shape of Mg-MOF-74 crystals to optimise film synthesis on alumina substrates. Microporous and Mesoporous Materials, 251, 190-199. https://doi.org/10.1016/j.micromeso.2017.05.058

    Chen, Y., Lv, D., Wu, J., Xiao, J., Xi, H., Xia, Q., & Li, Z. (2017). A new MOF 505@GO composite with high selectivity for CO2/CH4 and CO2/N2 separation. Chemical Engineering Journal, 308, 1065-1072. https://doi.org/10.1016/j.cej.2016.09.138

    Choi, J., Im, J., Noh, K., Kim, J., Vogt, T., & Lee, Y. (2019). Universal gas-uptake behavior of a zeolitic imidazolate framework ZIF-8 at high pressure. The Journal of Physical Chemistry C, 123(42), 25769-25774. https://doi.org/10.1021/acs.jpcc.9b08539

    Cui, X., Yang, Q., Xiong, Y., Bao, Z., Xing, H., & Dai, S. (2017). Preparation of ordered N-doped mesoporous carbon materials via a polymer–ionic liquid assembly. Chemical Communications, 53(36), 4915-4918. https://doi.org/10.1039/C7CC01000A

    Deegan, M. M., Antonio, A. M., Taggart, G. A., & Bloch, E. D. (2021). Manipulating solvent and solubility in the synthesis, activation, and modification of permanently porous coordination cages. Coordination Chemistry Reviews, 430, Article 213679. https://doi.org/10.1016/j.ccr.2020.213679

    Dien, N. D. (2019). Preparation of various morphologies of ZnO nanostructure through wet chemical methods. Advanced Material Science, 4, Article 147. https://doi.org/10.15761/AMS.1000147

    Fatima, S. S., Borhan, A., Ayoub, M., & Ghani, N. A. (2022). CO2 adsorption performance on surface-functionalized activated carbon impregnated with pyrrolidinium-based ionic liquid. Processes, 10(11), Article 2372. https://doi.org/10.3390/pr10112372

    Gao, Z., Liang, L., Zhang, X., Xu, P., & Sun, J. (2021). Facile one-pot synthesis of Zn/Mg-MOF-74 with unsaturated coordination metal centers for efficient CO2 adsorption and conversion to cyclic carbonates. ACS Applied Materials & Interfaces, 13(51), 61334-61345. https://doi.org/10.1021/acsami.1c20878

    Giordano, V. M., Datchi, F., & Dewaele, A. (2006). Melting curve and fluid equation of state of carbon dioxide at high pressure and high temperature. The Journal of Chemical Physics, 125(5), Article 054504. https://doi.org/10.1063/1.2215609

    Heravi, M. M., Ghavidel, M., & Mohammadkhani, L. (2018). Beyond a solvent: Triple roles of dimethylformamide in organic chemistry. RSC advances, 8(49), 27832-27862. https://doi.org/10.1039/C8RA04985H

    Howarth, A. J., Katz, M. J., Wang, T. C., Platero-Prats, A. E., Chapman, K. W., Hupp, J. T., & Farha, O. K. (2015). High efficiency adsorption and removal of selenate and selenite from water using metal–organic frameworks. Journal of the American Chemical Society, 137(23), 7488-7494. https://doi.org/10.1021/jacs.5b03904

    Hu, Y., Lin, B., He, P., Li, Y., Huang, Y., & Song, Y. (2015). Probing the structural stability of and enhanced CO2 Storage in MOF MIL‐68 (In) under high pressures by FTIR spectroscopy. Chemistry–A European Journal, 21(51), 18739-18748. https://doi.org/10.1002/chem.201502980

    Hu, Y., Liu, Z., Xu, J., Huang, Y., & Song, Y. (2013). Evidence of pressure enhanced CO2 storage in ZIF-8 probed by FTIR spectroscopy. Journal of the American Chemical Society, 135(25), 9287-9290. https://doi.org/10.1021/ja403635b

    Jiang, S., Hu, Y., Chen, S., Huang, Y., & Song, Y. (2018). Elucidation of the structural origins and contrasting guest–host interactions in CO2‐loaded CdSDB and PbSDB metal–Organic frameworks at high pressures. Chemistry–A European Journal, 24(72), 19280-19288. https://doi.org/10.1002/chem.201804069

    Kahr, J., Morris, R. E., & Wright, P. A. (2013). A post-synthetic incorporation of nickel into CPO-27(Mg) to give materials with enhanced permanent porosity. CrystEngComm, 15(45), 9779-9786. https://doi.org/10.1039/C3CE41228H

    Kaur, G., Rai, R. K., Tyagi, D., Yao, X., Li, P. Z., Yang, X. C., Zhao, Y., Xu, Q., & Singh, S. K. (2016). Room-temperature synthesis of bimetallic Co–Zn based zeolitic imidazolate frameworks in water for enhanced CO2 and H2 uptakes. Journal of Materials Chemistry A, 4(39), 14932-14938. https://doi.org/10.1039/C6TA04342A

    Kim, A. R., Yoon, T. U., Kim, S. I., Cho, K., Han, S. S., & Bae, Y. S. (2018). Creating high CO/CO2 selectivity and large CO working capacity through facile loading of Cu (I) species into an iron-based mesoporous metal-organic framework. Chemical Engineering Journal, 348, 135-142. https://doi.org/10.1016/j.cej.2018.04.177

    Kontos, A. G., Romanos, G. E., Veziri, C. M., Gotzias, A., Arfanis, M. K., Kouvelos, E., Likodimos, V., Naranikolos, G. G., & Falaras, P. (2020). Correlating vibrational properties with temperature and pressure dependent CO2 adsorption in zeolitic imidazolate frameworks. Applied Surface Science, 529, Article 147058. https://doi.org/10.1016/j.apsusc.2020.147058

    Lee, W. H., Zavgorodniy, A. V., Loo, C. Y., & Rohanizadeh, R. (2012). Synthesis and characterization of hydroxyapatite with different crystallinity: Effects on protein adsorption and release. Journal of Biomedical Materials Research Part A, 100(6), 1539-1549. https://doi.org/10.1002/jbm.a.34093

    Li, H., Meng, B., Mahurin, S. M., Chai, S. H., Nelson, K. M., Baker, D. C., Liu, H., & Dai, S. (2015). Carbohydrate based hyper-crosslinked organic polymers with–OH functional groups for CO2 separation. Journal of Materials Chemistry A, 3(42), 20913-20918. https://doi.org/10.1039/C5TA03213J

    Li, H., Yang, Z., Lu, S., Su, L., Wang, C., Huang, J., Zhou, J., Tang, J., & Huang, M. (2021). Nano-porous bimetallic CuCo-MOF-74 with coordinatively unsaturated metal sites for peroxymonosulfate activation to eliminate organic pollutants: Performance and mechanism. Chemosphere, 273, Article 129643. https://doi.org/10.1016/j.chemosphere.2021.129643

    Li, L. (2021). Synthesis and catalytic properties of metal-organic frameworks mimicking carbonic anhydrase. [Doctoral dissertation]. Western Kentucky University, USA. https://digitalcommons.wku.edu/stu_hon_theses/924

    Ling, J., Zhou, A., Wang, W., Jia, X., Ma, M., & Li, Y. (2022). One-pot method synthesis of bimetallic MgCu-MOF-74 and its CO2 adsorption under visible light. Acs Omega, 7(23), 19920-19929. https://doi.org/10.1021/acsomega.2c01717

    Liu, Y., Ghimire, P., & Jaroniec, M. (2019). Copper benzene-1, 3, 5-tricarboxylate (Cu-BTC) metal-organic framework (MOF) and porous carbon composites as efficient carbon dioxide adsorbents. Journal of colloid and interface science, 535, 122-132. https://doi.org/10.1016/j.jcis.2018.09.086

    Luo, F., Chen, J. L., Dang, L. L., Zhou, W. N., Lin, H. L., Li, J. Q., Liu, S. J., & Luo, M. B. (2015). High-performance Hg2+ removal from ultra-low-concentration aqueous solution using both acylamide-and hydroxyl-functionalized metal–organic framework. Journal of Materials Chemistry A, 3(18), 9616-9620. https://doi.org/10.1039/C5TA01669J

    Masoomi, M. Y., Morsali, A., Dhakshinamoorthy, A., & Garcia, H. (2019). Mixed‐metal MOFs: unique opportunities in metal–organic framework (MOF) functionality and design. Angewandte Chemie, 131(43), 15330-15347. https://doi.org/10.1002/ange.201902229

    Moggach, S. A., Bennett, T. D., & Cheetham, A. K. (2009). The effect of pressure on ZIF-8: increasing pore size with pressure and the formation of a high-pressure phase at 1.47 GPa. Angewandte Chemie International Edition, 48(38), 7087-7089. https://doi.org/10.1002/anie.200902643

    Niyousha, K. M., Ahad, G., Kambiz, T., & Mehrdad S. A. A. (2020). Experimental investigation and modeling of CO2 adsorption using modified activated carbon. Iranian Journal of Chemistry and Chemical Engineering, 39(1), 177-192.

    Nsami, J. N., & Mbadcam, J. K. (2013). The adsorption efficiency of chemically prepared activated carbon from cola nut shells by ZnCl2 on methylene blue. Journal of Chemistry, 2013, Article 469170. http://dx.doi.org/10.1155/2013/469170

    Ren, W., Wei, Z., Xia, X., Hong, Z., & Li, S. (2020). CO2 adsorption performance of CuBTC/graphene aerogel composites. Journal of Nanoparticles Research, 22, Article 191. https://doi.org/10.1007/s11051-020-04933-4

    Romero-Muñiz, C., Gavira-Vallejo, J. M., Merkling, P. J., & Calero, S. (2020). Impact of small adsorbates in the vibrational spectra of Mg-and Zn-MOF-74 revealed by first-principles calculations. ACS Applied Materials & Interfaces, 12(49), 54980-54990. https://doi.org/10.1021/acsami.0c16629

    Saha, D., Bramer, S. E. V., Orkoulas, G., Ho, H. C., Chen, J., & Henley, D. K. (2017). CO2 capture in lignin-derived and nitrogen-doped hierarchical porous carbons. Carbon, 121, 257-266. https://doi.org/10.1016/j.carbon.2017.05.088

    Serre, C., Bourrelly, S., Vimont, A., Ramsahye, N. A., Maurin, G., Llewellyn, P. L., Daturi, M., Filinchuk, Y., Leynaud, O., Barnes, P., & Férey, G. (2007). An explanation for the very large breathing effect of a metal-organic framework during CO2 adsorption. Advanced Materials, 19(17), 2246-2251. https://doi.org/10.1002/adma.200602645

    Sillar, K., & Sauer, J. (2012). Ab initio prediction of adsorption isotherms for small molecules in metal–organic frameworks: the effect of lateral interactions for methane/CPO-27-Mg. Journal of the American Chemical Society, 134(44), 18354-18365. https://doi.org/10.1021/ja307076t

    Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T. H., & Long, J. R. (2012). Carbon dioxide capture in metal-organic frameworks. Chemical Reviews, 112(2), 724-781. https://doi.org/10.1021/cr2003272

    Sun, H., Ren, D., Kong, R., Wang, D., Jiang, H., Tan, J., Wu, D., Chen, S., & Shen, B. (2019). Tuning 1-hexene/n-hexane adsorption on MOF-74 via constructing Co-Mg bimetallic frameworks. Microporous and Mesoporous Materials, 284, 151-160. https://doi.org/10.1016/j.micromeso.2019.04.031

    Szczesniak, B., Choma, J., & Jaroniec, M. (2018). Gas adsorption properties of hybrid graphene-MOF materials. Journal of Colloid and Interface Science, 514, 801-813. https://doi.org/10.1016/j.jcis.2017.11.049

    Tan, K., Zuluaga, S., Gong, Q., Canepa, P., Wang, H., Li, J., Chabal, Y. J., Thonhauser, T. (2014). Water reaction mechanism in metal organic frameworks with coordinatively unsaturated metal ions: MOF-74. Chemistry of Materials, 26(23), 6886-6895. https://doi.org/10.1021/cm5038183

    Tapiador, J., Leo, P., Rodríguez-Diéguez, A., Choquesillo-Lazarte, D., Calleja, G., & Orcajo, G. (2022). A novel Zn-based-MOF for efficient CO2 adsorption and conversion under mild conditions. Catalysis Today, 390-391, 230-236. https://doi.org/10.1016/j.cattod.2021.11.025

    Torrisi, A., Bell, R. G., Mellot-Draznieks, C. (2010). Functionalized MOFs for enhanced CO2 capture. Crystal Growth & Design,10(7), 2839-2841. https://doi.org/10.1021/cg100646e

    Valenzano, L., Civalleri, B., Chavan, S., Bordiga, S., Nilsen, M. H., Jakobsen, S., Lillerud, J. P., & Lamberti, C. (2011). Disclosing the complex structure of UiO-66 metal organic framework: A synergic combination of experiment and theory. Chemistry of Materials, 23(7), 1700-1718. https://doi.org/10.1021/cm1022882

    Villajos, J. A., Orcajo, G., Martos, C., Botas, J. Á., Villacañas, J., & Calleja, G. (2015). Co/Ni mixed-metal sited MOF-74 material as hydrogen adsorbent. International Journal of Hydrogen Energy, 40(15), 5346-5352. https://doi.org/10.1016/j.ijhydene.2015.01.113

    Vo, T. K., Bae, Y. S., Chang, B. J., Moon, S. Y., Kim, J. H., & Kim, J. (2019). Highly CO selective Cu (I)-doped MIL-100 (Fe) adsorbent with high CO/CO2 selectivity due to π complexation: Effects of Cu (I) loading and activation temperature. Microporous and Mesoporous Materials, 274, 17-24. https://doi.org/10.1016/j.micromeso.2018.07.024

    Vuong, G. T., Pham, M. H., & Do, T. O. (2013). Synthesis and engineering porosity of a mixed metal Fe2 Ni MIL-88B metal–organic framework. Dalton Transactions, 42(2), 550-557. https://doi.org/10.1039/C2DT32073H

    Wang, J., Cui, S., Li, Z., Wen, S., Ning, P., Lu, S., Lu, P., Huang, L., & Wang, Q. (2021). Comprehensive investigation of dynamic CO2 capture performance using Mg/DOBDC as precursor to fabricate a composite of metallic organic framework and graphene oxide. Chemical Engineering Journal, 415, Article 128859. https://doi.org/10.1016/j.cej.2021.128859

    Wang, J., Huang, J., Wu, X., Yuan, B., Sun, Y., Zeng, Z., & Deng, S. (2014). Effect of nitrogen group on selective separation of CO2/N2 in porous polystyrene. Chemical Engineering Journal, 256, 390-397. https://doi.org/10.1016/j.cej.2014.06.104

    Wang, J., Yang, J., Krishna, R., Yang, T., & Deng, S. (2016). A versatile synthesis of metal–organic framework-derived porous carbons for CO2 capture and gas separation. Journal of Materials Chemistry A, 4(48), 19095-19106. https://doi.org/10.1039/C6TA07330A

    Wu, H., Simmons, J. M., Srinivas, G., Zhou, W., & Yildirim, T. (2010). Adsorption sites and binding nature of CO2 in prototypical metal− organic frameworks: a combined neutron diffraction and first-principles study. The Journal of Physical Chemistry Letters, 1(13), 1946-1951. https://doi.org/10.1021/jz100558r

    Xie, S., Qin, Q., Liu, H., Jin, L., Wei, X., Liu, J., Liu, X., Yao, Y., Dong, L., & Li, B. (2020). MOF-74-M (M= Mn, Co, Ni, Zn, MnCo, MnNi, and MnZn) for low-temperature NH3-SCR and in situ DRIFTS study reaction mechanism. ACS Applied Materials & Interfaces, 12(43), 48476-48485. https://doi.org/10.1021/acsami.0c11035

    Xin, L. Y., Liu, G. Z., Li, X. L., & Wang, L. Y. (2011). Structural Diversity for a Series of Metal(II) Complexes Based on Flexible 1,2-Phenylenediacetate and Dipyridyl-type Coligand. Crystal Growth & Design, 12(1), 147-157. https://doi.org/10.1021/cg200903k

    Yang, J., Li, J., Wang, W., Li, L., & Li, J. (2013). Adsorption of CO2, CH4, and N2 on 8-, 10-, and 12-membered ring hydrophobic microporous high-silica zeolites: DDR, silicalite-1, and beta. Industrial & Engineering Chemistry Research, 52(50), 17856-17864. https://doi.org/10.1021/ie403217n

    Yang, J., Zheng, C., Xiong, P., Li, Y., & Wei, M. (2014). Zn-doped Ni-MOF material with a high supercapacitive performance. Journal of Materials Chemistry A, 2(44), 19005-19010. https://doi.org/10.1039/C4TA04346D

    Yazaydin, A. O., Snurr, R. Q., Park, T. H., Koh, K., Liu, J., Levan, M. D., Benin, A. I., Jakubczak, P., Lanuza, M., Galloway, D. B., Low, J. J., & Willis, R. R. (2009). Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. Journal of the American Chemical Society, 131(51), 18198-18199.

    Yu, C. H., Huang, C. H., & Tan, C. S. (2012). A review of CO2 capture by absorption and adsorption. Aerosol and Air Quality Research, 12(5), 745-769. https://doi.org/10.4209/aaqr.2012.05.0132

    Zhang, Z., Liu, J., Wang, Z., & Zhang, J. (2020). Bimetallic Fe–Cu-based metal–organic frameworks as efficient adsorbents for gaseous elemental mercury removal. Industrial & Engineering Chemistry Research, 60(1), 781-789. https://doi.org/10.1021/acs.iecr.0c04298

    Zhou, W., Wu, H., & Yildirim, T. (2008). Enhanced H2 adsorption in isostructural metal− organic frameworks with open metal sites: Strong dependence of the binding strength on metal ions. Journal of the American Chemical Society, 130(46), 15268-15269. https://doi.org/10.1021/ja807023q

    Zhu, X. W., Zhou, X. P., & Li, D. (2016). Exceptionally water stable heterometallic gyroidal MOFs: tuning the porosity and hydrophobicity by doping metal ions. Chemical Communications, 52(39), 6513-6516. https://doi.org/10.1039/C6CC02116F

    Zou, R., Li, P. Z., Zeng, Y. F., Liu, J., Zhao, R., Duan, H., Luo, Z., Wang, J. G., Zou, R., & Zhao, Y. (2016). Bimetallic metal‐organic frameworks: Probing the lewis acid site for CO2 conversion. Small, 12(17), 2334-2343. https://doi.org/10.1002/smll.201503741

    Zurrer, T., Wong, K., Horlyck, J., Lovell, E. C., Wright, J., Bedford, N. M., Han, K., Scott, J., & Amal, R. (2021). Mixed-metal MOF-74 templated catalysts for efficient carbon dioxide capture and methanation. Advanced Functional Materials, 31(9), Article 2007624. https://doi.org/10.1002/adfm.202007624