e-ISSN 2231-8526
ISSN 0128-7680
Muhammad Fauzinizam Razali, Sareh Aiman Hilmi Abu Seman, Mohd Syakirin Rusdi and Siti Nuha Majiddah Abdul Aziz
Pertanika Journal of Science & Technology, Volume 32, Issue 4, July 2024
DOI: https://doi.org/10.47836/pjst.32.4.14
Keywords: Failure correlation, momentum trapping, Split Hopkinson pressure bar, strain rates
Published on: 25 July 2024
In dynamic applications, the effective use of kenaf composite materials necessitates comprehensive and precise elucidation of their mechanical response under high strain rate loading conditions. Accurately measuring the sample’s deformation can only be achieved using a pulse-trapping technique. In this study, a dynamic momentum trapping mechanism that is simple to assemble and configure was constructed and affixed to a conventional Split Hopkinson Pressure Bar (SHPB) system. The effectiveness of the verified momentum trap approach was shown when the secondary wave of compression was decreased by 50 percent in the application of momentum trapping that stopped the specimen from coming in contact with the incident bar, resulting in a much-improved correlation between various strain rates and the failure of kenaf composite microstructure.
Abidin, N. M. Z., Sultan, M. T. H., Shah, A. U. M., Shahar, F. S., Najeeb, M. I., Ali, M. R., Basri, A. A., Baloor, S. S., Gaff, M., & Hui, D. (2023). The evaluation of the mechanical properties of glass, kenaf, and honeycomb fiber-reinforced composite. Reviews on Advanced Materials Science, 62(1), Article 20220299. https://doi.org/10.1515/rams-2022-0299
Alshammari, M. B., Ahmad, A., Jawaid, M., & Awad, S. A. (2023). Thermal and dynamic performance of kenaf/washingtonia fibre-based hybrid composites. Journal of Materials Research and Technology, 25, 1642-1648. https://doi.org/10.1016/j.jmrt.2023.06.035
Arjmandi, R., Yıldırım, I., Hatton, F., Hassan, A., Jefferies, C., Mohamad, Z., & Othman, N. (2021). Kenaf fibers reinforced unsaturated polyester composites: A review. Journal of Engineered Fibers and Fabrics, 16, Article 15589250211040184. https://doi.org/10.1177/15589250211040184
Arockia Dhanraj, J., G, D., Kumar, S., Sivakumar, S., & Vishnuvardhan, R. (2019). Experimental investigation on mechanical properties and vibration damping frequency factor of kenaf fiber reinforced epoxy composite. SAE Technical Papers, 2019-28-0167. https://doi.org/10.4271/2019-28-0167
Bhambure, S. S., Rao, A. S., & Senthilkumar, T. (2023). Analysis of mechanical properties of kenaf and kapok fiber reinforced hybrid polyester composite. Journal of Natural Fibers, 20(1), Article 2156964. https://doi.org/10.1080/15440478.2022.2156964
Holbery, J., & Houston, D. (2006). Natural-fiber-reinforced polymer composites in automotive applications. The Journal of The Minerals, Metals & Materials Society, 58, 80-86. https://doi.org/10.1007/s11837-006-0234-2
Mansingh, B. B., Binoj, J. S., Manikandan, N., Sai, N. P., Siengchin, S., Rangappa, S. M., Bharath, K. N., & Indran, S. (2022). Chapter 12 - Kenaf fibers, their composites and applications. In S. M. Rangappa, J. Parameswaranpillai, S. Siengchin, T. Ozbakkaloglu, & H. Wang (Eds.), Plant Fibers, Their Composites, and Applications (pp. 283-304). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-824528-6.00011-4
Millogo, Y., Aubert, J. E., Hamard, E., & Morel, J. C. (2015). How properties of kenaf fibers from Burkina Faso contribute to the reinforcement of earth blocks. Materials, 8(5), 2332-2345. https://www.mdpi.com/1996-1944/8/5/2332
Nemat-Nasser, S., Isaacs, J. B., & Starrett, J. E. (1991). Hopkinson Techniques for dynamic recovery experiments. Proceedings: Mathematical and Physical Sciences, 435(1894), 371-391. http://www.jstor.org/stable/51971
Ochi, S. (2008). Mechanical properties of kenaf fibers and kenaf/PLA composites. Mechanics of Materials, 40(4–5), 446-452. https://doi.org/https://doi.org/10.1016/j.mechmat.2007.10.006
Omar, M. F., Akil, H. M., Ahmad, Z. A., Mazuki, A. A. M., & Yokoyama, T. (2010). Dynamic properties of pultruded natural fibre reinforced composites using split Hopkinson pressure bar technique. Materials & Design, 31(9), 4209-4218. https://doi.org/https://doi.org/10.1016/j.matdes.2010.04.036
Prot, M., & Cloete, T. J. (2016). A tandem momentum trap for dynamic specimen recovery during split Hopkinson pressure bar testing of cancellous bone. Journal of Dynamic Behavior of Materials, 2, 50-58. https://doi.org/10.1007/s40870-016-0046-6
Saba, N., Paridah, M. T., & Jawaid, M. (2015). Mechanical properties of kenaf fibre reinforced polymer composite: A review. Construction and Building Materials, 76, 87-96. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2014.11.043
Seman, S. A. H. A., Ahmad, R., & Akil, H. M. (2019a). Experimental and numerical investigations of kenaf natural fiber reinforced composite subjected to impact loading. Polymer Composites, 40(3), 909-915. https://doi.org/10.1002/pc.24758
Seman, S. A. H. A., Ahmad, R., & Akil, H. M. (2019b). Meso-scale modelling and failure analysis of kenaf fiber reinforced composites under high strain rate compression loading. Composites Part B: Engineering, 163, 403-412. https://doi.org/10.1016/j.compositesb.2019.01.037
Sharba, M., Salman, S., Leman, Z., Sultan, M., Ishak, M., & Hanim, M. (2016). Effects of processing method, moisture content, and resin system on physical and mechanical properties of woven kenaf plant fiber composites. Bioresources, 11(1), 1466-1476.
Song, B., & Chen, W. (2004). Loading and unloading split Hopkinson pressure bar pulse-shaping techniques for dynamic hysteretic loops. Experimental Mechanics, 44, 622-627. https://doi.org/10.1007/BF02428252
Tamrakar, S., Kiziltas, A., Mielewski, D., & Zander, R. (2021). Characterization of kenaf and glass fiber reinforced hybrid composites for underbody shield applications. Composites Part B: Engineering, 216, Article 108805. https://doi.org/https://doi.org/10.1016/j.compositesb.2021.108805
Uzoma, A. E., Nwaeche, C. F., Al-Amin, M., Muniru, O. S., Olatunji, O., & Nzeh, S. O. (2023). Development of interior and exterior automotive plastics parts using kenaf fiber reinforced polymer composite. Eng, 4(2), 1698-1710. https://www.mdpi.com/2673-4117/4/2/96
Vasilash, G. S. (2020). Natural fiber-reinforced composite developed for Toyota EV concept. Gardner Business Media. https://www.gardnerweb.com/articles/natural-fiber-reinforced-composite-developed-for-toyota-ev-concept
Wazeer, A., Das, A., Abeykoon, C., Sinha, A., & Karmakar, A. (2023). Composites for electric vehicles and automotive sector: A review. Green Energy and Intelligent Transportation, 2(1), Article 100043. https://doi.org/https://doi.org/10.1016/j.geits.2022.100043
Xia, K., & Yao, W. (2015). Dynamic rock tests using split Hopkinson (Kolsky) bar system – A review. Journal of Rock Mechanics and Geotechnical Engineering, 7(1), 27-59. https://doi.org/https://doi.org/10.1016/j.jrmge.2014.07.008
Zhang, K., Sun, Y., Wang, F., Liang, W., & Wang, Z. (2020). Progressive failure and energy absorption of chopped bamboo fiber reinforced polybenzoxazine composite under impact loadings. Polymers, 12(8), Article 1809. https://doi.org/10.3390/polym12081809
ISSN 0128-7680
e-ISSN 2231-8526