e-ISSN 2231-8526
ISSN 0128-7680
Ahmad Fariz Nicholas, Hasliza Abu Hassim, Mohd Huzairi Mohd Zainudin, Zunita Zakaria, Mohd Termizi Yusof, Mohd Nazri Md Nayan and Amirul Faiz Mohd Azmi
Pertanika Journal of Science & Technology, Volume 32, Issue 6, October 2024
DOI: https://doi.org/10.47836/pjst.32.6.06
Keywords: Animal feed, biological pre-treatment, enzyme activity, lignin, oil palm frond, white rot fungi
Published on: 25 October 2024
Oil palm frond (OPF) is a palm oil plantation by-product commonly used in animal feeding in Malaysia. The large production, availability, and nutrient content make OPF the best candidate for utilization as animal feed. However, OPF contains high lignin bonds to cellulose and hemicellulose that further limit the digestibility of rumen microbes to produce volatile fatty acids as an energy source for ruminants. This study aims to identify and determine the enzyme activity (ligninolytic, cellulolytic, and hemicellulolytic) of enzymes extracted from filamentous fungi in the pre-treatment of OPF using the solid-state fermentation (SSF) technique. The enzyme extracted from SSF was determined by its enzyme activity (laccase, lignin peroxidase, manganese peroxidase, carboxymethylcellulose, avicelase, and xylanase). Eight fungi were successfully identified to produce enzymes determined in this experiment. Phanerina mellea showed the highest average ligninolytic enzyme activity with a value of 0.37 U/mL and an average cellulolytic + hemicellulolytic of 0.18 U/mL. In this experiment, P. mellea was the most desired fungi for the pre-treatment of OPF. The optimum ligninolytic enzyme production time of OPF pre-treatment is 10 days of SSF.
Abdel-Hamid, A. M., Solbiati, J. O., & Cann, I. K. (2013). Insights into lignin degradation and its potential industrial applications. Advances in Applied Microbiology, 82, 1–28. https://doi.org/10.1016/B978-0-12-407679-2.00001-6
Akpinar, M., & Urek, R. O. (2012). Production of ligninolytic enzymes by solid-state fermentation using Pleurotus eryngii. Preparative Biochemistry and Biotechnology, 42(6), 582–597. https://doi.org/10.1080/10826068.2012.673528
Asgher, M., Bhatti, H. N., Ashraf, M., & Legge, R. L. (2008). Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation, 19(6), 771-783. https://doi.org/10.1007/s10532-008-9185-3
Azmi, M. A., Yusof, M. T., Zunita, Z., & Hassim, H. A. (2019). Enhancing the utilization of oil palm fronds as livestock feed using biological pre-treatment method. IOP Conference Series: Earth and Environmental Science, 230(1), Article 12077. https://doi.org/10.1088/1755-1315/230/1/012077
Buayairaksa, M., Kanokmedhakul, S., Kanokmedhakul, K., Moosophon, P., Hahnvajanawong, C., & Soytong, K. (2011). Cytotoxic lasiodiplodin derivatives from the fungus Syncephalastrum racemosum. Archives of Pharmacal Research, 34(12), 2037–2041. https://doi.org/10.1007/s12272-011-1205-x
Chanjula, P., Petcharat, V., & Cherdthong, A. (2017). Effects of fungal (Lentinussajor-caju) treated oil palm frond on performance and carcass characteristics in finishing goats. Asian-Australasian Journal of Animal Sciences, 30(6), Article 811. https://doi.org/10.5713/ajas.16.0704
Chandran, B., & Nigam, P. (2001). Studies on the production of enzymes by white-rot fungi for the decolourisation of textile dyes. Enzyme and Microbial Technology, 29(8-9), 575–579. https://doi.org/10.1016/S0141-0229(01)00430-6
Colombatto, D., Morgavi, D. P., Furtado, A. F., & Beauchemin, K. A. (2003). Screening of exogenous enzymes for ruminant diets: Relationship between biochemical characteristics and in vitro ruminal degradation. Journal of Animal Science, 81(10), 2628–2638. https://doi.org/10.2527/2003.81102628x
Dinis, M. J., Bezerra, R. M. F., Nunes, F., Dias, A. A., Guedes, C. V, Ferreira, L. M. M., Cone, J. W., Marques, G. S. M., Barros, A. R. N., & Rodrigues, M. A. M. (2009). Bioresource Technology Modification of wheat straw lignin by solid state fermentation with white-rot fungi. Bioresource Technology, 100(20), 4829–4835. https://doi.org/10.1016/j.biortech.2009.04.036
Dong, X. Q., Yang, J. S., Zhu, N., Wang, E. T., & Yuan, H. L. (2013). Sugarcane bagasse degradation and characterization of three white-rot fungi. Bioresource Technology, 131, 443–451. https://doi.org/10.1016/j.biortech.2012.12.182
Falade, A. O., Nwodo, U. U., Iweriebor, B. C., Green, E., Mabinya, L. V., & Okoh, A. I. (2017). Lignin peroxidase functionalities and prospective applications. MicrobiologyOpen, 6(1), Article e00394. https://doi.org/10.1002/mbo3.394
Galal, F. H., AbuElnasr, A., Abdallah, I., Zaki, O., & Seufi, A. M. (2017). Culex (Culex) pipiens mosquitoes carry and harbor pathogenic fungi during their developmental stages. Journal of Clinical Practice and Research, 39(1), 1-6. https://doi.org/10.5152/etd.2017.16067
Gautam, A., Kumar, A., Bharti, A. K., & Dutt, D. (2018). Rice straw fermentation by Schizophyllum commune ARC-11 to produce high level of xylanase for its application in pre-bleaching. Journal of Genetic Engineering and Biotechnology, 16(2), 693–701. https://doi.org/10.1016/j.jgeb.2018.02.006
Ghani, A. A. A., Rusli, N. D., Shahudin, M. S., Goh, Y. M., Zamri-Saad, M., Hafandi, A., & Hassim, H. A. (2017). Utilisation of oil palm fronds as ruminant feed and its effect on fatty acid metabolism. Pertanika Journal of Tropical Agricultural Science, 40(2), 215-224.
Gupte, A., & Madamwar, D. (1997). Production of cellulolytic enzymes by coculturing of Aspergillus ellipticus and Aspergillus fumigatus grown on bagasse under solid state fermentation. Applied Biochemistry and Biotechnology, 62, 267–274. https://doi.org/10.1007/BF02788002
Gupte, A., Gupte, S., & Patel, H. (2007). Ligninolytic enzyme production under solid-state fermentation by white rot fungi. Journal of Scientific and Industrial Research 66(08), 611–14.
Hofrichter, M. (2002). Lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial Technology, 30(4), 454–466. https://doi.org/10.1016/S0141-0229(01)00528-2
Hu, H. L., Brink, J. Van Den, Gruben, B. S., Wösten, H. A. B., Gu, J., & Vries, R. P. De. (2011). International biodeterioration & biodegradation improved enzyme production by co-cultivation of Aspergillus niger and Aspergillus oryzae and with other fungi. International Biodeterioration & Biodegradation, 65(1), 248–252. https://doi.org/10.1016/j.ibiod.2010.11.008
Islam, M., Dahlan, I., Rajion, M. A., & Jelan, Z. A. (2000). Productivity and nutritive values of different fractions of oil palm (Elaeis guineensis) frond. Asian-Australasian Journal of Animal Sciences, 13(8), 1113–1120. https://doi.org/10.5713/ajas.2000.1113
Isroi, I., Millati, R., Niklasson, C., Cayanto, C., Taherzadeh, M. J., & Lundquist, K. (2011). Biological treatment of lignocelluloses with white-rot fungi and its applications. BioResources, 6(4), 5224–5259.
Ji, L., Yang, J., Fan, H., Yang, Y., Li, B., Yu, X., Zhu, N., & Yuan, H. (2014). Synergy of crude enzyme cocktail from cold-adapted Cladosporium cladosporioides Ch2-2 with commercial xylanase achieving high sugars yield at low cost. Biotechnology for Biofuels, 7(1), Article 130. https://doi.org/10.1186/s13068-014-0130-x
Khan, S. A., Hamayun, M., Yoon, H., Kim, H. Y., Suh, S. J., Hwang, S. K., Kim, J. M., Lee, I. J., Choo, Y. S., Yoon, U. H., Kong, W. S., Lee, B. M., & Kong, W. S. (2008). Plant growth promotion and Penicillium citrinum. BMC Microbiology, 8(1), Article 231. https://doi.org/10.1186/1471-2180-8-231
Kumar, A., & Arora, P. K. (2022). Biotechnological applications of manganese peroxidases for sustainable management. Frontiers in Environmental Science, 10, Article 875157. https://doi.org/10.3389/fenvs.2022.875157
Lima, A. C., Silva, D., Silva, V., Godoy, M., Cammarota, M., & Gutarra, M. (2021). β‐Mannanase production by Penicillium citrinum through solid‐state fermentation using açaí residual biomass (Euterpe oleracea). Journal of Chemical Technology & Biotechnology, 96(10), 2744–2754. https://doi.org/10.1002/jctb.6818
Madhavi, V., & Lele, S. S. (2009). Laccase: Properties and applications. BioResources, 4(4), 1-24.
Mäkelä, M. R., Hildén, K. S., & Kuuskeri, J. (2020). Fungal lignin-modifying peroxidases and H2O2-producing enzymes. In O. Zaragoza & A. Casdevall (Eds.) Encyclopedia of Mycology (pp. 247-259). Elsevier.
Manavalan, T., Manavalan, A., & Heese, K. (2015). Characterization of lignocellulolytic enzymes from white-rot fungi. Current Microbiology, 70(4), 485–498. https://doi.org/10.1007/s00284-014-0743-0
Mahmood, Z. A., & Azhar, I. (2017). Detection of aflatoxins and use of scanning electron microscope for the identification of fungal species in some commonly used spices. Asian Journal of Plant Science and Research, 7(5), 64–73.Miettinen, O., Spirin, V., Vlasák, J., Rivoire, B., Stenroos, S., & Hibbett, D. (2016). Polypores and genus concepts in Phanerochaetaceae (Polyporales, Basidiomycota). MycoKeys, 17, 1-46. https://doi.org/10.3897/mycokeys.17.10153
Pant, D., & Adholeya, A. (2017). Enhanced production of ligninolytic enzymes and decolorization of molasses distillery wastewater by fungi under solid-state fermentation. Biodegradation, 18, 647–659. https://doi.org/10.1007/s10532-006-9097-z
Ohm, R. A., Jong, J. F. De, Lugones, L. G., Aerts, A., Kothe, E., Stajich, J. E., de Vries, R. P., Record, E., Levasseur, A., Baker, S. E., Bartholomew, K. A., Coutinho, P. M., Erdmann, S., Fowler, T. J., Gathman, A. C., Lombard, V., Henrissat, B., Knabe, N., Kües, U., … & Wösten, H. A. B. (2010). Genome sequence of the model mushroom Schizophyllum commune. Nature Biotechnology, 28(9), 957-963. https://doi.org/10.1038/nbt.1643
Parveez, G. K. A., Kamil, N. N., Zawawi, N. Z., Ong-Abdullah, M., Rasuddin, R., Loh, S. H., Selvadaray, K. R., Hoong, S. S., & Idris, Z. (2022). Oil palm economic performance in Malaysia and R&D progress in 2021. Journal of Oil Palm Research, 34(2), 185–218. https://doi.org/10.21894/jopr.2022.0036
Pham, M. T., Huang, C. M., & Kirschner, R. (2019). First report of the oil palm disease fungus Marasmius palmivorus from Taiwan causing stem rot disease on native Formosa palm Arenga engleri as new host. Letters in Applied Microbiology, 70(3), 143-150. https://doi.org/10.1111/lam.13257
Podder, D., & Ghosh, S. K. (2019). A new application of Trichoderma asperellum as an Anopheline larvicide for eco friendly management in medical science. Scientific Reports, 9(1), Article 1108. https://doi.org/10.1038/s41598-018-37108-2
Rahman, M. M., Lourenço, M., Hassim, H. A., Baars, J. J., Sonnenberg, A. S., Cone, J. W., Boever, J. D., & Fievez, V. (2011). Improving ruminal degradability of oil palm fronds using white rot fungi. Animal Feed Science and Technology, 169(3-4), 157–166. https://doi.org/10.1016/j.anifeedsci.2011.06.014
Raju, B., Santhanakumar, K. S., & Kesavachandran, U. (2020). Gastrointestinal involvement of unusual Mucormycete, Syncephalastrum racemosum in a diabetic patient with adenocarcinoma: Rare case presentation with review of literature. Infection, 48, 791–797. https://doi.org/10.1007/s15010-020-01455-y
Rouches, E., Herpoël-Gimbert, I., Steyer, J. P., & Carrere, H. (2016). Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: A review. Renewable and Sustainable Energy Reviews, 59, 179–198. https://doi.org/10.1016/j.rser.2015.12.317
Rusli, N. D., Azmi, M. A., Mat, K., Hasnita, C. H., Wan-Zahari, M., Azhar, K., Zamri-Saad, M., & Hassim, H. A. (2019). The effect of physical and biological pre-treatments of oil palm fronds on in vitro ruminal degradability. Pertanika Journal of Tropical Agricultural Science, 42(2), 791-805.
Rusli, N. D., Ghani, A. A. A., Mat, K., Yusof, M. T., Zamri-Saad, M., & Hassim, H. A. (2021). The potential of pretreated oil palm frond in enhancing rumen degradability and growth performance: A review. Advances in Animal and Veterinary Sciences, 9(6), 811–822. http://dx.doi.org/10.17582/journal.aavs/2021/9.6.811.822
Saha, B. C., Qureshi, N., Kennedy, G. J., & Cotta, M. A. (2016). Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis. International Biodeterioration & Biodegradation, 109, 29–35. https://doi.org/10.1016/j.ibiod.2015.12.020
Saif, F. A., Yaseen, S. A., Alameen, A. S., Mane, S. B., & Undre, P. B. (2020). Identification of Penicillium species of fruits using morphology and spectroscopic methods. In Journal of Physics: Conference Series, 1644, Article 12019. https://doi.org/10.1088/1742-6596/1644/1/012019
Saminathan, M., Mohamed, W. N. W., Noh, A. M., Ibrahim, N. A., Fuat, M. A., Ramiah, S. K., Chung, E. L. T., & Dian, N. L. H. M. (2012). Treated oil palm frond and its utilisation as an improved feedstuff for ruminants-An overview. Journal of Oil Palm Research, 34(4), 591–607. https://doi.org/10.21894/jopr.2021.0041
Sigler, L., Bartley, J. R., Parr, D. H., & Morris, A. J. (1999). Maxillary Sinusitis Caused by Medusoid Form ofSchizophyllum commune. Journal of Clinical Microbiology, 37(10), 3395–3398.
Sukri, S. M., Rahman, R. A., Illias, R. M., & Yaakob, H. (2014). Optimization of alkaline pretreatment conditions of oil palm fronds in improving the lignocelluloses contents for reducing sugar production. Biotechnology Letter, 19(1), 9006–9018.
Tamur, H. A., Al-Janabi, H. J., Al-Janabi, J. K. A., Mohsin, L. Y., & Al-Yassiry, Z. A. N. (2019). Characterization and antagonistic activity of new causal agent of wilt disease in Imperata cylindrica (Marasmius palmivorus). Journal of Pure and Applied Microbiology, 13(3), 1525–1536. https://doi.org/10.22207/JPAM.13.3.24
Tian, X. F., Fang, Z., & Guo, F. (2012). Impact and prospective of fungal pre‐treatment of lignocellulosic biomass for enzymatic hydrolysis. Biofuels, Bioproducts and Biorefining, 6(3), 335–350. https://doi.org/10.1002/bbb.346
Toth, G. B., & Pavia, H. (2000). Removal of dissolved brown algal phlorotannins using insoluble polyvinylpolypyrrolidone (PVPP). Journal of Chemical Ecology, 27, 1899–1910. https://doi.org/10.1023/A:1010421128190
Tuyen, D. V., Phuong, H. N., Cone, J. W., Baars, J. J. P., Sonnenberg, A. S. M., & Hendriks, W. H. (2013). Effect of fungal treatments of fibrous agricultural by-products on chemical composition and in vitro rumen fermentation and methane production. Bioresource Technology, 129, 256–263. https://doi.org/10.1016/j.biortech.2012.10.128
Verma, M., Brar, S. K., Tyagi, R. D., Surampalli, R. Y., & Val, J. R. (2007). Antagonistic fungi, Trichoderma spp. Panoply of Biological Control, 37, 1–20. https://doi.org/10.1016/j.bej.2007.05.012
Walther, G., Pawłowska, J., Alastruey-Izquierdo, A., Wrzosek, M., Rodriguez-Tudela, J. L., Dolatabadi, S., Chakrabarti, A., & Hoog, G. S. D. (2013). DNA barcoding in Mucorales: An inventory of biodiversity. Persoonia: Molecular Phylogeny and Evolution of Fungi, 30(1), 11-47. https://doi.org/10.3767/003158513X665070
Wang, F., Xu, L., Zhao, L., Ding, Z., Ma, H., & Terry, N. (2019). Fungal laccase production from lignocellulosic agricultural wastes by solid-state fermentation: A review. Microorganisms, 7(12), Article 665. https://doi.org/10.3390/microorganisms7120665
Zafar, A. M., Najma, S., Farhana, T., Shahlla, I., Safia, A., Iqbal, A. (2017). Detection of aflatoxins and use of scanning electron microscope for the identification of fungal species in some commonly used spices. Asian Journal of Plant Science and Research, 7(5), 64–73.
ISSN 0128-7680
e-ISSN 2231-8526