Home / Regular Issue / JST Vol. 31 (3) Apr. 2023 / JST-3726-2022

 

Ex-Situ Development and Characterization of Composite Film Based on Bacterial Cellulose Derived from Oil Palm Frond Juice and Chitosan as Food Packaging

Norshafira Syazwani Abu Hasan, Shahril Mohamad, Sharifah Fathiyah Sy Mohamad, Mohd Hafiz Arzmi and Nurul Nadia Izzati Supian

Pertanika Journal of Science & Technology, Volume 31, Issue 3, April 2023

DOI: https://doi.org/10.47836/pjst.31.3.03

Keywords: Bacterial cellulose, chitosan, ex-situ method, film composite, oil palm frond juice

Published on: 7 April 2023

The development of alternative food packaging films using bio-based residues is in great demand for replacing petroleum-based packaging materials. However, large-scale application is severely limited by costly production and poor performance. This study investigates the ex-situ modification of bacterial cellulose (BC) produced by Acetobacter xylinum in oil palm fronds juice to obtain BC-Chitosan (BCC) films. FTIR revealed the structure of amide I and II bands, confirming the presence of chitosan in BCC films. The FE-SEM images of BCC films showed the formation of a thick chitosan layer with increasing chitosan incorporated into the BC surface structure. The coated chitosan layer observed improved mechanical properties in BCC films due to the disappearance of empty pores between BC fibers. Increments in chitosan concentration slightly decreased the thermal behavior of BCC. The antimicrobial effects of BCC films were effective against Gram-positive bacteria (Staphylococcus aureus) when the concentration of chitosan incorporated was above 0.6 %w/v. This study reveals the potential of extending the application of BC derived from oil palm frond juice (OPFJ) for developing food packaging materials.

  • Azeredo, H. M. C., Barud, H., Farinas, C. S., Vasconcellos, V. M., & Claro, A. M. (2019). Bacterial cellulose as a raw material for food and food packaging applications. Frontiers in Sustainable Food Systems, 3, 1-14. https://doi.org/10.3389/fsufs.2019.00007

  • Bandyopadhyay, S., Saha, N., Brodnjak, U. V., & Saha, P. (2018). Bacterial cellulose based greener packaging material: A bioadhesive polymeric film. Materials Research Express, 5(11), Article 115405. https://doi.org/10.1088/2053-1591/aadb01

  • Buruaga-Ramiro, C., Valenzuela, S. V., Valls, C., Roncero, M. B., Pastor, F. I. J., Díaz, P., & Martinez, J. (2020). Development of an antimicrobial bioactive paper made from bacterial cellulose. International Journal of Biological Macromolecules, 158, 587-594. https://doi.org/10.1016/j.ijbiomac.2020.04.234

  • Cacicedo, M. L., Pacheco, G., Islan, G. A., Alvarez, V. A., Barud, H. S., & Castro, G. R. (2020). Chitosan-bacterial cellulose patch of ciprofloxacin for wound dressing: Preparation and characterization studies. International Journal of Biological Macromolecules, 147, 1136-1145. https://doi.org/10.1016/j.ijbiomac.2019.10.082

  • Cazón, P., Velázquez, G., & Vázquez, M. (2019). Characterization of bacterial cellulose films combined with chitosan and polyvinyl alcohol: Evaluation of mechanical and barrier properties. Carbohydrate Polymers, 216, 72-85.

  • Dehnad, D., Mirzaei, H., Emam-Djomeh, Z., Jafari, S. M., & Dadashi, S. (2014). Thermal and antimicrobial properties of chitosan-nanocellulose films for extending shelf life of ground meat. Carbohydrate Polymers, 109, 148-154. https://doi.org/10.1016/j.carbpol.2014.03.063

  • Du, R., Zhao, F., Peng, Q., Zhou, Z., & Han, Y. (2018). Production and characterization of bacterial cellulose produced by gluconacetobacter xylinus isolated from Chinese persimmon vinegar. Carbohydrate Polymers, 194, 200-207. https://doi.org/10.1016/j.carbpol.2018.04.041

  • Dubey, S., Sharma, R. K., Agarwal, P., Singh, J., Sinha, N., & Singh, R. P. (2017). From rotten grapes to industrial exploitation: Komagataeibacter europaeus SGP37, a micro-factory for macroscale production of bacterial nanocellulose. International Journal of Biological Macromolecules, 96, 52-60. https://doi.org/10.1016/j.ijbiomac.2016.12.016

  • He, F., Yang, H., Zeng, L., Hu, H., & Hu, C. (2020). Production and characterization of bacterial cellulose obtained by Gluconacetobacter xylinus utilizing the by-products from Baijiu production. Bioprocess and Biosystems Engineering, 43, 927-936. https://doi.org/10.1007/s00449-020-02289-6

  • Hussain, Z., Sajjad, W., Khan, T., & Wahid, F. (2019). Production of bacterial cellulose from industrial wastes: A review. Cellulose, 26, 2895-2911. https://doi.org/10.1007/s10570-019-02307-1

  • Jia, Y., Wang, X., Huo, M., Zhai, X., Li, F., & Zhong, C. (2017). Preparation and characterization of a novel bacterial cellulose/chitosan bio-hydrogel. Nanomaterials and Nanotechnology, 7, 1-8. https://doi.org/10.1177/1847980417707172

  • Ju, S., Zhang, F., Duan, J., & Jiang, J. (2020). Characterization of bacterial cellulose composite films incorporated with bulk chitosan and chitosan nanoparticles: A comparative study. Carbohydrate Polymers, 237, Article 116167. https://doi.org/10.1016/j.carbpol.2020.116167

  • Kim, J., Cai, Z., Lee, H. S., Choi, G. S., Lee, D. H., & Jo, C. (2011). Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. Journal of Polymer Research, 18, 739-744. https://doi.org/10.1007/s10965-010-9470-9

  • Kongruang, S. (2007). Bacterial cellulose production by acetobacter xylinum strains from agricultural waste products. In W. S. Adney, J. D. McMillan, J. Mielenz, K. T. Klasson (Eds.), Biotechnology for Fuels and Chemicals (pp. 763-774). Springer. https://doi.org/10.1007/978-1-60327-526-2_70

  • Kuo, C. H., Huang, C. Y., Shieh, C. J., Wang, H. M. D., & Tseng, C. Y. (2019). Hydrolysis of orange peel with cellulase and pectinase to produce bacterial cellulose using gluconacetobacter xylinus. Waste and Biomass Valorization, 10, 85-93. https://doi.org/10.1007/s12649-017-0034-7

  • Leonarski, E., Cesca, K., Zanella, E., Stambuk, B. U., de Oliveira, D., & Poletto, P. (2021). Production of kombucha-like beverage and bacterial cellulose by acerola byproduct as raw material. LWT, 135, Article 110075. https://doi.org/10.1016/j.lwt.2020.110075

  • Liang, J., Wang, R., & Chen, R. (2019). The impact of cross-linking mode on the physical and antimicrobial properties of a chitosan/bacterial cellulose composite. Polymers, 11(3), Article 491. https://doi.org/10.3390/polym11030491

  • Lin, D., Liu, Z., Shen, R., Chen, S., & Yang, X. (2020). Bacterial cellulose in food industry: Current research and future prospects. International Journal of Biological Macromolecules, 158, 1007-1019. https://doi.org/10.1016/j.ijbiomac.2020.04.230

  • Lin, W. C., Lien, C. C., Yeh, H. J., Yu, C. M., & Hsu, S. H. (2013). Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydrate Polymers, 94(1), 603-611. https://doi.org/10.1016/j.carbpol.2013.01.076

  • Malhotra, B., Keshwani, A., & Kharkwal, H. (2015). Antimicrobial food packaging: Potential and pitfalls. Frontiers in Microbiology, 6, Article 611. https://doi.org/10.3389/fmicb.2015.00611

  • Oliveira, M. A., Gonzaga, M. L. C., Bastos, M. S. R., Magalhães, H. C. R., Benevides, S. D., Furtado, R. F., Zambelli, R. A., & Garruti, D. S. (2020). Packaging with cashew gum/gelatin/essential oil for bread: Release potential of the citral. Food Packaging and Shelf Life, 23, Article 100431. https://doi.org/10.1016/j.fpsl.2019.100431

  • Revin, V., Liyaskina, E., Nazarkina, M., Bogatyreva, A., & Shchankin, M. (2018). Cost-effective production of bacterial cellulose using acidic food industry by-products. Brazilian Journal of Microbiology, 49, 151-159. https://doi.org/10.1016/j.bjm.2017.12.012

  • Sharma, C., Bhardwaj, N. K., & Pathak, P. (2021). Static intermittent fed-batch production of bacterial nanocellulose from black tea and its modification using chitosan to develop antibacterial green packaging material. Journal of Cleaner Production, 279, Article 123608. https://doi.org/10.1016/j.jclepro.2020.123608

  • Supian, N. N. I., Zakaria, J., Amin, K. N. M., Mohamad, S., & Sy Mohamad, S. F. (2021). Effect of fermentation period on bacterial cellulose production from oil palm frond (OPF) juice. IOP Conference Series: Materials Science and Engineering, 1092, Article 012048. https://doi.org/10.1088/1757-899X/1092/1/012048

  • Szymańska, E., & Winnicka, K. (2015). Stability of chitosan-A challenge for pharmaceutical and biomedical applications. Marine Drugs, 13(4), 1819-1846. https://doi.org/10.3390/md13041819

  • Tanpichai, S., Witayakran, S., Wootthikanokkhan, J., Srimarut, Y., Woraprayote, W., & Malila, Y. (2020). Mechanical and antibacterial properties of the chitosan coated cellulose paper for packaging applications: Effects of molecular weight types and concentrations of chitosan. International Journal of Biological Macromolecules, 155, 1510-1519. https://doi.org/10.1016/j.ijbiomac.2019.11.128

  • Ul-Islam, M., Shah, N., Ha, J. H., & Park, J. K. (2011). Effect of chitosan penetration on physico-chemical and mechanical properties of bacterial cellulose. Korean Journal of Chemical Engineering, 28, 1736-1743. https://doi.org/10.1007/s11814-011-0042-4

  • Wahid, F., Hu, X. H., Chu, L. Q., Jia, S. R., Xie, Y. Y., & Zhong, C. (2019). Development of bacterial cellulose/chitosan based semi-interpenetrating hydrogels with improved mechanical and antibacterial properties. International Journal of Biological Macromolecules, 122, 380-387. https://doi.org/10.1016/j.ijbiomac.2018.10.105

  • Yusof, S. J. H. M., Roslan, A. M., Ibrahim, K. N., Abdullah, S. S. S., Zakaria, M. R., Hassan, M. A., & Shirai, Y. (2019). Life cycle assessment for bioethanol production from oil palm frond juice in an oil palm based biorefinery. Sustainability, 11(24), Article 6928. https://doi.org/10.3390/SU11246928

  • Zahari, M. A. K. M., Ariffin, H., Mokhtar, M. N., Salihon, J., Shirai, Y., & Hassan, M. A. (2012). Factors affecting poly(3-hydroxybutyrate) production from oil palm frond juice by cupriavidus necator (CCUG52238 T). Journal of Biomedicine and Biotechnology, 2012, Article 125856. https://doi.org/10.1155/2012/125865

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-3726-2022

Download Full Article PDF

Share this article

Related Articles