PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 32 (4) Jul. 2024 / JST-4777-2023

 

Application of Fuzzy Analytic Network Process in Selection of Bio-composite Filament for Fused Deposition Modeling Process

Hazliza Aida Che Hamid, Mastura Mohammad Taha, Syahibudil Ikhwan Abdul Kudus, Noryani Muhammad, Mohd Adrinata Shaharuzaman, Loh Yueh Feng and Ahmad Ilyas Rushdan

Pertanika Journal of Science & Technology, Volume 32, Issue 4, July 2024

DOI: https://doi.org/10.47836/pjst.32.4.15

Keywords: Bio-composites filaments, fused deposition modeling (FDM), fuzzy analytic network process, material selection process

Published on: 25 July 2024

The concurrent engineering approach necessitates integrating material selection into the product design to effectively align with client specifications. Premature product failure, leading to substantial losses, frequently arises as a consequence of inadequate material selection due to conflicting demands. The Multi-Criteria Decision Making (MCDM) procedures are essential for making wise decisions since choosing materials is complicated. This study employs fuzzy analytic network process (FANP) techniques to determine which bio-composite filaments will be the most effective for Fused Deposition Modeling (FDM). The requirements and available factors of egg carton packaging material determine the selection criteria for bio-composite filaments. These factors serve as the foundation for identifying ten essential features. The acquired data showed that the sugar palm fiber/polylactic acid composite (SPF/PLA) 7.5 wt.% fiber loading exhibited the highest priority score, 19.80%. The kenaf/acrylonitrile butadiene styrene (Kenaf/ABS) composite, with a fiber loading of 7.5%, exhibited the lowest ranking, scoring 4.4%. Subsequently, a sensitivity analysis was conducted to further corroborate the findings. It was observed that the SPF/PLA 7.5 wt.% fiber loading consistently ranked highest throughout all four examined scenarios. The study determined that a bio-composite filament material with a weight ratio of 7.5% SPF/PLA fiber loading is the optimal choice for utilizing FDM technology in the design of egg carton packaging.

  • AL-Oqla, F. M., & Salit, M. S. (2017). Introduction. Materials Selection for Natural Fiber Composites (pp. 1-21). Woodhead Publishing. https://doi.org/10.1016/b978-0-08-100958-1.00001-3

  • Alsubari, S., Zuhri, M. Y. M., Sapuan, S. M., Ishak, M. R., Ilyas, R. A., & Asyraf, M. R. M. (2021). Potential of natural fiber reinforced polymer composites in sandwich structures: A review on its mechanical properties. Polymers, 13(3), Article 423. https://doi.org/10.3390/polym13030423

  • Amir, A. L., Ishak, M. R., Yidris, N., Zuhri, M. Y. M., & Asyraf, M. R. M. (2021). Potential of honeycomb-filled composite structure in composite cross-arm component: A review on recent progress and its mechanical properties. Polymers, 13(8), Article 1341. https://doi.org/10.3390/polym13081341

  • Ariffadzilah, M. L. M., Yusuf, Y., & Mustafa, N. (2022). Physical, mechanical and morphological properties of recycled polypropylene (PP) reinforced with coconut fiber. [Final Year Degree Dissertation]. Universiti Teknikal Malaysia Melaka, Melaka, Malaysia. http://digitalcollection.utem.edu.my/id/eprint/28160

  • Asyraf, M. R. M., Ishak, M. R., Sapuan, S. M., Yidris, N., Ilyas, R. A., Rafidah, M., & Razman, M. R. (2020). Potential application of green composites for cross arm component in transmission tower: A brief review. International Journal of Polymer Science, 2020, Article 8878300. https://doi.org/10.1155/2020/8878300

  • Ayağ, Z., & Yücekaya, A. (2019). A fuzzy ANP-based GRA approach to evaluate ERP packages. International Journal of Enterprise Information Systems, 15(1), 45-68. https://doi.org/10.4018/IJEIS.2019010103

  • Azali, N. S. Z., Mustafa, N., Jumaidin, R., Kudus, S. I. A., Razali, N., Taha, M. M., Yusuf, Y., & Ali, M. R. (2022). Thermal properties of wood dust fibre and recycled polypropylene (r-WoPPc) for development of thermoplastic composites filaments of fused deposition modeling. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 96(2), 42-50. https://doi.org/10.37934/arfmts.96.2.4250

  • Babu, K. S., Raju, N. S., Reddy, M. S., & Rao, D. N. (2006, June 19-23). The material selection for typical wind turbine blades using a MADM approach & analysis of blades. In Multiple Criteria Decision Making (pp. 1-12). Chania, Greece.

  • Balmat, J. F., Lafont, F., Maifret, R., & Pessel, N. (2011). A decision-making system to maritime risk assessment. Ocean Engineering, 38(1), 171-176. https://doi.org/10.1016/j.oceaneng.2010.10.012

  • Bathaei, A., Mardani, A., Baležentis, T., Awang, S. R., Streimikiene, D., Fei, G. C., & Zakuan, N. (2019). Application of fuzzy analytical network process (ANP) and VIKOR for the assessment of green agility critical success factors in dairy companies. Symmetry, 11(2), Article 250. https://doi.org/10.3390/sym11020250

  • Bi, X., & Huang, R. (2022). 3D printing of natural fiber and composites: A state-of-the-art review. Materials and Design, 222, Article 111065. https://doi.org/10.1016/j.matdes.2022.111065

  • Chen, W. C., Wang, L. Y., & Lin, M. C. (2015). A hybrid MCDM model for new product development: Applied on the Taiwanese LiFePOIndustry. Mathematical Problems in Engineering, 2015, Article 462929. https://doi.org/10.1155/2015/462929

  • Coppola, B., Garofalo, E., Di Maio, L., Scarfato, P., & Incarnato, L. (2018). Investigation on the use of PLA/hemp composites for the fused deposition modelling (FDM) 3D printing. AIP Conference Proceedings, 1981(1), 1-5. AIP Publishing. https://doi.org/10.1063/1.5045948

  • Daver, F., Lee, K. P. M., Brandt, M., & Shanks, R. (2018). Cork–PLA composite filaments for fused deposition modelling. Composites Science and Technology, 168, 230-237. https://doi.org/10.1016/j.compscitech.2018.10.008

  • Depuydt, D., Balthazar, M., Hendrickx, K., Six, W., Ferraris, E., Desplentere, F., Ivens, J., & Van Vuure, A. W. (2019). Production and characterization of bamboo and flax fiber reinforced polylactic acid filaments for fused deposition modeling (FDM). Polymer Composites, 40(5), 1951-1963. https://doi.org/10.1002/pc.24971

  • Dong, Y., Milentis, J., & Pramanik, A. (2018). Additive manufacturing of mechanical testing samples based on virgin poly (lactic acid) (PLA) and PLA/wood fibre composites. Advances in Manufacturing, 6, 71-82. https://doi.org/10.1007/s40436-018-0211-3

  • Emovon, I., & Oghenenyerovwho, O. S. (2020). Application of MCDM method in material selection for optimal design: A review. Results in Materials, 7, Article 100115. https://doi.org/10.1016/j.rinma.2020.100115

  • Faruk, O., Bledzki, A. K., Fink, H. P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 37(11), 1552-1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003

  • Gholampour, A., & Ozbakkaloglu, T. (2020). A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. Journal of Materials Science, 55(3), 829-892. http://doi.org/10.1007/s10853-019-03990-y

  • Han, S. N. M. F., Taha, M. M., Mansor, M. R., & Rahman, M. A. A. (2022). Investigation of tensile and flexural properties of kenaf fiber-reinforced acrylonitrile butadiene styrene composites fabricated by fused deposition modeling. Journal of Engineering and Applied Science, 69, Article 52. https://doi.org/10.1186/s44147-022-00109-0

  • Hanan, F., Jawaid, M., & Md Tahir, P. (2020). Mechanical performance of oil palm/kenaf fiber-reinforced epoxy-based bilayer hybrid composites. Journal of Natural Fibers, 17(2), 155-167. https://doi.org/10.1080/15440478.2018.1477083

  • Ionescu-Bujor, M., & Cacuci, (2004). A comparative review of sensitivity and uncertainty analysis of large-scale systems-I: Deterministic methods. Nuclear Science and Engineering, 147(3), 189-203. https://doi.org/10.13182/NSE03-105CR

  • Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 43(7), 2883-2892. https://doi.org/10.1016/j.compositesb.2012.04.053

  • Kabir, S. M. F., Mathur, K., & Seyam, A. F. M. (2020). A critical review on 3D printed continuous fiber-reinforced composites: History, mechanism, materials and properties. Composite Structures, 232, Article 111476. https://doi.org/10.1016/j.compstruct.2019.111476

  • Ku, H., Wang H., Pattarachaiyakoop N., & Trada M. (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B: Engineering, 42(4), 856-873. https://doi.org/10.1016/j.compositesb.2011.01.010

  • Kumar, A., Sah, B., Singh, A. R., Deng, Y., He, X., Kumar, P., & Bansal, R. C. (2017). A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renewable and Sustainable Energy Reviews, 69, 596-609. https://doi.org/10.1016/j.rser.2016.11.191

  • Le Duigou, A., Correa, D., Ueda, M., Matsuzaki, R., & Castro, M. (2020). A review of 3D and 4D printing of natural fibre biocomposites. Materials and Design, 194, Article 108911. https://doi.org/10.1016/j.matdes.2020.108911

  • Li, P., Qian, H., Wu, J., & Chen, J. (2013). Sensitivity analysis of TOPSIS method in water quality assessment: I. Sensitivity to the parameter weights. Environmental Monitoring and Assessment, 185, 2453-2461. https://doi.org/10.1007/s10661-012-2723-9

  • Liu, H., He, H., Peng, X., Huang, B., & Li, J. (2019). Three-dimensional printing of poly(lactic acid) bio-based composites with sugarcane bagasse fiber: Effect of printing orientation on tensile performance. Polymers for Advanced Technologies, 30(4), 910-922. https://doi.org/10.1002/pat.4524

  • Maity, S. R., & Chakraborty, S. (2012a). Super-critical boiler material selection using fuzzy analytic network process. Management Science Letters, 2(4), 1083-1096. https://doi.org/10.5267/j.msl.2012.03.012

  • Maity, S. R., & Chakraborty, S. (2012b). Turbine blade material selection using fuzzy analytic network process. International Journal of Materials and Structural Integrity, 6(2–4), 169-189. https://doi.org/10.1504/IJMSI.2012.049954

  • Matsuzaki, R., Ueda, M., Namiki, M., Jeong, T. K., Asahara, H., Horiguchi, K., Nakamura, T., Todoroki, A., & Hirano, Y. (2016). Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Scientific Reports, 6, Article 23058. https://doi.org/10.1038/srep23058

  • Mazzanti, V., Malagutti, L., & Mollica, F. (2019). FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties. Polymers, 11(7), Article 1094. https://doi.org/10.3390/polym11071094

  • Milosevic, M., Stoof, D., & Pickering, K. L. (2017). Characterizing the mechanical properties of fused deposition modelling natural fiber recycled polypropylene composites. Journal of Composites Science, 1(1), Article 7. https://doi.org/10.3390/jcs1010007

  • Mistarihi, M. Z., Okour, R. A., & Mumani, A. A. (2020). An integration of a QFD model with Fuzzy-ANP approach for determining the importance weights for engineering characteristics of the proposed wheelchair design. Applied Soft Computing Journal, 90, Article 106136. https://doi.org/10.1016/j.asoc.2020.106136

  • Mohaghar, A., Fathi, M. R., Faghih, A., & Turkayesh, M. M. (2012). An integrated approach of Fuzzy ANP and Fuzzy TOPSIS for R&D project selection: A case study. Australian Journal of Basic and Applied Sciences, 6(2), 66-75.

  • Mohan, N., Senthil, P., Vinodh, S., & Jayanth, N. (2017). A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual and Physical Prototyping, 12(1), 47-59. https://doi.org/10.1080/17452759.2016.1274490

  • Mohd Pu’ad, N. A. S., Abdul Haq, R. H., Mohd Noh, H., Abdullah, H. Z., Idris, M. I., & Lee, T. C. (2019). Review on the fabrication of fused deposition modelling (FDM) composite filament for biomedical applications. Materials Today: Proceedings, 29(Part 1), 228-232. https://doi.org/10.1016/j.matpr.2020.05.535

  • Montalvo Navarrete, J. I., Hidalgo-Salazar, M. A., Escobar Nunez, E., & Rojas Arciniegas, A. J. (2018). Thermal and mechanical behavior of biocomposites using additive manufacturing. International Journal on Interactive Design and Manufacturing, 12, 449-458. https://doi.org/10.1007/s12008-017-0411-2

  • Nahfis, S. Z. A., Nuzaimah, M., Abdul Kudus, S. I., Ahmad, M. N., & Shaharuzaman, M. A. (2022). Chemical treatment has an influence on the strengthening of recycle wood pp composite ( r-WoPPC ) filament. Proceedings of Mechanical Engineering Research Day 2022, 70-72.

  • Nasereddin, J. M., Wellner, N., Alhijjaj, M., Belton, P., & Qi, S. (2018). Development of a simple mechanical screening method for predicting the feedability of a pharmaceutical FDM 3D printing filament. Pharmaceutical Research, 35, Article 151. https://doi.org/10.1007/s11095-018-2432-3

  • Nasir, M. H. M., Taha, M. M., Razali, N., Ilyas, R. A., Knight, V. F., & Norrrahim, M. N. F. (2022). Effect of chemical treatment of sugar palm fibre on rheological and thermal properties of the PLA composites filament for FDM 3D printing. Materials, 15(22), Article 8082. https://doi.org/10.3390/ma15228082

  • Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172-196. https://doi.org/10.1016/j.compositesb.2018.02.012

  • Noryani, M., Sapuan, S. M., & Mastura, M. T. (2018). Multi-criteria decision-making tools for material selection of natural fibre composites: A review. Journal of Mechanical Engineering and Sciences, 12(1), 3330-3353. https://doi.org/10.15282/jmes.12.1.2018.5.0299

  • Noryani, M., Sapuan, S. M., Mastura, M. T., Zuhri, M. Y. M., & Zainudin, E. S. (2018). A statistical framework for selecting natural fibre reinforced polymer composites based on regression model. Fibers and Polymers, 19, 1039-1049. https://doi.org/10.1007/s12221-018-8113-3

  • Pang, N., Nan, M., Meng, Q., & Zhao, S. (2021). Selection of wind turbine based on fuzzy analytic network process: A case study in China. Sustainability (Switzerland), 13(4), Article 1792. https://doi.org/10.3390/su13041792

  • Pop, M. A., Croitoru, C., Bedő, T., Geaman, V., Radomir, I., Coșnița, M., Zaharia, S. M., Chicoș, L. A., & Miloșan, I. (2019). Structural changes during 3D printing of bioderived and synthetic thermoplastic materials. Journal of Applied Polymer Science, 136(17), Article 47382. https://doi.org/10.1002/app.47382

  • Rajendran Royan, N. R., Leong, J. S., Chan, W. N., Tan, J. R., & Shamsuddin, Z. S. B. (2021). Current state and challenges of natural fibre-reinforced polymer composites as feeder in fdm-based 3d printing. Polymers, 13(14), Article 2289. https://doi.org/10.3390/polym13142289

  • Reddy, T. B. (2013). Open access mechanical performance of green coconut fiber/HDPE composites. International Journal of Engineering Research and Applications, 3(6), 1262-1270.

  • Šafka, J., Ackermann, M., Bobek, J., Seidl, M., Habr, J., & Běhálek, L. (2016). Use of composite materials for FDM 3D print technology. Materials Science Forum, 862, 174-181. https://doi.org/10.4028/www.scientific.net/MSF.862.174

  • Safri, S. N. A., Sultan, M. T. H., Jawaid, M., & Jayakrishna, K. (2018). Impact behaviour of hybrid composites for structural applications: A review. Composites Part B: Engineering, 133, 112-121. https://doi.org/10.1016/j.compositesb.2017.09.008

  • Saltelli, A., Ratto, M., Tarantola, S., & Campolongo, F. (2005). Sensitivity analysis for chemical models. Chemical. Review, 105 (7), 2811-2828. https://doi.org/10.1021/cr040659d

  • Senvar, O., Vayvay, O., & Hamal, S. (2018). Selection of optimal renewable energy investment project via fuzzy ANP. Journal of Economics, Finance and Accounting, 5(2), 224-233. https://doi.org/10.17261/pressacademia.2018.827

  • Stoof, D., & Pickering, K. (2018). Sustainable composite fused deposition modelling filament using recycled pre-consumer polypropylene. Composites Part B: Engineering, 135, 110-118. https://doi.org/10.1016/j.compositesb.2017.10.005

  • Stoof, D., Pickering, K., & Zhang, Y. (2017). Fused deposition modelling of natural fibre/polylactic acid composites. Journal of Composites Science, 1(1), Article 8. https://doi.org/10.3390/jcs1010008

  • Velasquez, M., & Hester, P. (2013). An analysis of multi-criteria decision making methods. International Journal of Operations Research, 10(2), 56-66.

  • Vigneshwaran, S., Sundarakannan, R., John, K. M., Joel Johnson, R. D., Prasath, K. A., Ajith, S., Arumugaprabu, V., & Uthayakumar, M. (2020). Recent advancement in the natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production, 277, Article 124109. https://doi.org/10.1016/j.jclepro.2020.124109

  • Xanthos, M. (Ed). (2005). Functional Fillers for Plastics. Wiley. https://doi.org/10.1002/3527605096

  • Xiao, X., Chevali, V. S., Song, P., He, D., & Wang, H. (2019). Polylactide/hemp hurd biocomposites as sustainable 3D printing feedstock. Composites Science and Technology, 184, Article 107887. https://doi.org/10.1016/j.compscitech.2019.107887

  • Zavadskas, E. K., Antucheviciene, J., Turskis, Z., & Adeli, H. (2016). Hybrid multiple-criteria decision-making methods: A review of applications in engineering. Scientia Iranica, 23(1), 1-20. https://doi.org/10.24200/sci.2016.2093

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-4777-2023

Download Full Article PDF

Share this article

Related Articles