e-ISSN 2231-8526
ISSN 0128-7680
Hazliza Aida Che Hamid, Mastura Mohammad Taha, Syahibudil Ikhwan Abdul Kudus, Noryani Muhammad, Mohd Adrinata Shaharuzaman, Loh Yueh Feng and Ahmad Ilyas Rushdan
Pertanika Journal of Science & Technology, Volume 32, Issue 4, July 2024
DOI: https://doi.org/10.47836/pjst.32.4.15
Keywords: Bio-composites filaments, fused deposition modeling (FDM), fuzzy analytic network process, material selection process
Published on: 25 July 2024
The concurrent engineering approach necessitates integrating material selection into the product design to effectively align with client specifications. Premature product failure, leading to substantial losses, frequently arises as a consequence of inadequate material selection due to conflicting demands. The Multi-Criteria Decision Making (MCDM) procedures are essential for making wise decisions since choosing materials is complicated. This study employs fuzzy analytic network process (FANP) techniques to determine which bio-composite filaments will be the most effective for Fused Deposition Modeling (FDM). The requirements and available factors of egg carton packaging material determine the selection criteria for bio-composite filaments. These factors serve as the foundation for identifying ten essential features. The acquired data showed that the sugar palm fiber/polylactic acid composite (SPF/PLA) 7.5 wt.% fiber loading exhibited the highest priority score, 19.80%. The kenaf/acrylonitrile butadiene styrene (Kenaf/ABS) composite, with a fiber loading of 7.5%, exhibited the lowest ranking, scoring 4.4%. Subsequently, a sensitivity analysis was conducted to further corroborate the findings. It was observed that the SPF/PLA 7.5 wt.% fiber loading consistently ranked highest throughout all four examined scenarios. The study determined that a bio-composite filament material with a weight ratio of 7.5% SPF/PLA fiber loading is the optimal choice for utilizing FDM technology in the design of egg carton packaging.
AL-Oqla, F. M., & Salit, M. S. (2017). Introduction. Materials Selection for Natural Fiber Composites (pp. 1-21). Woodhead Publishing. https://doi.org/10.1016/b978-0-08-100958-1.00001-3
Alsubari, S., Zuhri, M. Y. M., Sapuan, S. M., Ishak, M. R., Ilyas, R. A., & Asyraf, M. R. M. (2021). Potential of natural fiber reinforced polymer composites in sandwich structures: A review on its mechanical properties. Polymers, 13(3), Article 423. https://doi.org/10.3390/polym13030423
Amir, A. L., Ishak, M. R., Yidris, N., Zuhri, M. Y. M., & Asyraf, M. R. M. (2021). Potential of honeycomb-filled composite structure in composite cross-arm component: A review on recent progress and its mechanical properties. Polymers, 13(8), Article 1341. https://doi.org/10.3390/polym13081341
Ariffadzilah, M. L. M., Yusuf, Y., & Mustafa, N. (2022). Physical, mechanical and morphological properties of recycled polypropylene (PP) reinforced with coconut fiber. [Final Year Degree Dissertation]. Universiti Teknikal Malaysia Melaka, Melaka, Malaysia. http://digitalcollection.utem.edu.my/id/eprint/28160
Asyraf, M. R. M., Ishak, M. R., Sapuan, S. M., Yidris, N., Ilyas, R. A., Rafidah, M., & Razman, M. R. (2020). Potential application of green composites for cross arm component in transmission tower: A brief review. International Journal of Polymer Science, 2020, Article 8878300. https://doi.org/10.1155/2020/8878300
Ayağ, Z., & Yücekaya, A. (2019). A fuzzy ANP-based GRA approach to evaluate ERP packages. International Journal of Enterprise Information Systems, 15(1), 45-68. https://doi.org/10.4018/IJEIS.2019010103
Azali, N. S. Z., Mustafa, N., Jumaidin, R., Kudus, S. I. A., Razali, N., Taha, M. M., Yusuf, Y., & Ali, M. R. (2022). Thermal properties of wood dust fibre and recycled polypropylene (r-WoPPc) for development of thermoplastic composites filaments of fused deposition modeling. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 96(2), 42-50. https://doi.org/10.37934/arfmts.96.2.4250
Babu, K. S., Raju, N. S., Reddy, M. S., & Rao, D. N. (2006, June 19-23). The material selection for typical wind turbine blades using a MADM approach & analysis of blades. In Multiple Criteria Decision Making (pp. 1-12). Chania, Greece.
Balmat, J. F., Lafont, F., Maifret, R., & Pessel, N. (2011). A decision-making system to maritime risk assessment. Ocean Engineering, 38(1), 171-176. https://doi.org/10.1016/j.oceaneng.2010.10.012
Bathaei, A., Mardani, A., Baležentis, T., Awang, S. R., Streimikiene, D., Fei, G. C., & Zakuan, N. (2019). Application of fuzzy analytical network process (ANP) and VIKOR for the assessment of green agility critical success factors in dairy companies. Symmetry, 11(2), Article 250. https://doi.org/10.3390/sym11020250
Bi, X., & Huang, R. (2022). 3D printing of natural fiber and composites: A state-of-the-art review. Materials and Design, 222, Article 111065. https://doi.org/10.1016/j.matdes.2022.111065
Chen, W. C., Wang, L. Y., & Lin, M. C. (2015). A hybrid MCDM model for new product development: Applied on the Taiwanese LiFePOIndustry. Mathematical Problems in Engineering, 2015, Article 462929. https://doi.org/10.1155/2015/462929
Coppola, B., Garofalo, E., Di Maio, L., Scarfato, P., & Incarnato, L. (2018). Investigation on the use of PLA/hemp composites for the fused deposition modelling (FDM) 3D printing. AIP Conference Proceedings, 1981(1), 1-5. AIP Publishing. https://doi.org/10.1063/1.5045948
Daver, F., Lee, K. P. M., Brandt, M., & Shanks, R. (2018). Cork–PLA composite filaments for fused deposition modelling. Composites Science and Technology, 168, 230-237. https://doi.org/10.1016/j.compscitech.2018.10.008
Depuydt, D., Balthazar, M., Hendrickx, K., Six, W., Ferraris, E., Desplentere, F., Ivens, J., & Van Vuure, A. W. (2019). Production and characterization of bamboo and flax fiber reinforced polylactic acid filaments for fused deposition modeling (FDM). Polymer Composites, 40(5), 1951-1963. https://doi.org/10.1002/pc.24971
Dong, Y., Milentis, J., & Pramanik, A. (2018). Additive manufacturing of mechanical testing samples based on virgin poly (lactic acid) (PLA) and PLA/wood fibre composites. Advances in Manufacturing, 6, 71-82. https://doi.org/10.1007/s40436-018-0211-3
Emovon, I., & Oghenenyerovwho, O. S. (2020). Application of MCDM method in material selection for optimal design: A review. Results in Materials, 7, Article 100115. https://doi.org/10.1016/j.rinma.2020.100115
Faruk, O., Bledzki, A. K., Fink, H. P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 37(11), 1552-1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003
Gholampour, A., & Ozbakkaloglu, T. (2020). A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. Journal of Materials Science, 55(3), 829-892. http://doi.org/10.1007/s10853-019-03990-y
Han, S. N. M. F., Taha, M. M., Mansor, M. R., & Rahman, M. A. A. (2022). Investigation of tensile and flexural properties of kenaf fiber-reinforced acrylonitrile butadiene styrene composites fabricated by fused deposition modeling. Journal of Engineering and Applied Science, 69, Article 52. https://doi.org/10.1186/s44147-022-00109-0
Hanan, F., Jawaid, M., & Md Tahir, P. (2020). Mechanical performance of oil palm/kenaf fiber-reinforced epoxy-based bilayer hybrid composites. Journal of Natural Fibers, 17(2), 155-167. https://doi.org/10.1080/15440478.2018.1477083
Ionescu-Bujor, M., & Cacuci, (2004). A comparative review of sensitivity and uncertainty analysis of large-scale systems-I: Deterministic methods. Nuclear Science and Engineering, 147(3), 189-203. https://doi.org/10.13182/NSE03-105CR
Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 43(7), 2883-2892. https://doi.org/10.1016/j.compositesb.2012.04.053
Kabir, S. M. F., Mathur, K., & Seyam, A. F. M. (2020). A critical review on 3D printed continuous fiber-reinforced composites: History, mechanism, materials and properties. Composite Structures, 232, Article 111476. https://doi.org/10.1016/j.compstruct.2019.111476
Ku, H., Wang H., Pattarachaiyakoop N., & Trada M. (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B: Engineering, 42(4), 856-873. https://doi.org/10.1016/j.compositesb.2011.01.010
Kumar, A., Sah, B., Singh, A. R., Deng, Y., He, X., Kumar, P., & Bansal, R. C. (2017). A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renewable and Sustainable Energy Reviews, 69, 596-609. https://doi.org/10.1016/j.rser.2016.11.191
Le Duigou, A., Correa, D., Ueda, M., Matsuzaki, R., & Castro, M. (2020). A review of 3D and 4D printing of natural fibre biocomposites. Materials and Design, 194, Article 108911. https://doi.org/10.1016/j.matdes.2020.108911
Li, P., Qian, H., Wu, J., & Chen, J. (2013). Sensitivity analysis of TOPSIS method in water quality assessment: I. Sensitivity to the parameter weights. Environmental Monitoring and Assessment, 185, 2453-2461. https://doi.org/10.1007/s10661-012-2723-9
Liu, H., He, H., Peng, X., Huang, B., & Li, J. (2019). Three-dimensional printing of poly(lactic acid) bio-based composites with sugarcane bagasse fiber: Effect of printing orientation on tensile performance. Polymers for Advanced Technologies, 30(4), 910-922. https://doi.org/10.1002/pat.4524
Maity, S. R., & Chakraborty, S. (2012a). Super-critical boiler material selection using fuzzy analytic network process. Management Science Letters, 2(4), 1083-1096. https://doi.org/10.5267/j.msl.2012.03.012
Maity, S. R., & Chakraborty, S. (2012b). Turbine blade material selection using fuzzy analytic network process. International Journal of Materials and Structural Integrity, 6(2–4), 169-189. https://doi.org/10.1504/IJMSI.2012.049954
Matsuzaki, R., Ueda, M., Namiki, M., Jeong, T. K., Asahara, H., Horiguchi, K., Nakamura, T., Todoroki, A., & Hirano, Y. (2016). Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Scientific Reports, 6, Article 23058. https://doi.org/10.1038/srep23058
Mazzanti, V., Malagutti, L., & Mollica, F. (2019). FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties. Polymers, 11(7), Article 1094. https://doi.org/10.3390/polym11071094
Milosevic, M., Stoof, D., & Pickering, K. L. (2017). Characterizing the mechanical properties of fused deposition modelling natural fiber recycled polypropylene composites. Journal of Composites Science, 1(1), Article 7. https://doi.org/10.3390/jcs1010007
Mistarihi, M. Z., Okour, R. A., & Mumani, A. A. (2020). An integration of a QFD model with Fuzzy-ANP approach for determining the importance weights for engineering characteristics of the proposed wheelchair design. Applied Soft Computing Journal, 90, Article 106136. https://doi.org/10.1016/j.asoc.2020.106136
Mohaghar, A., Fathi, M. R., Faghih, A., & Turkayesh, M. M. (2012). An integrated approach of Fuzzy ANP and Fuzzy TOPSIS for R&D project selection: A case study. Australian Journal of Basic and Applied Sciences, 6(2), 66-75.
Mohan, N., Senthil, P., Vinodh, S., & Jayanth, N. (2017). A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual and Physical Prototyping, 12(1), 47-59. https://doi.org/10.1080/17452759.2016.1274490
Mohd Pu’ad, N. A. S., Abdul Haq, R. H., Mohd Noh, H., Abdullah, H. Z., Idris, M. I., & Lee, T. C. (2019). Review on the fabrication of fused deposition modelling (FDM) composite filament for biomedical applications. Materials Today: Proceedings, 29(Part 1), 228-232. https://doi.org/10.1016/j.matpr.2020.05.535
Montalvo Navarrete, J. I., Hidalgo-Salazar, M. A., Escobar Nunez, E., & Rojas Arciniegas, A. J. (2018). Thermal and mechanical behavior of biocomposites using additive manufacturing. International Journal on Interactive Design and Manufacturing, 12, 449-458. https://doi.org/10.1007/s12008-017-0411-2
Nahfis, S. Z. A., Nuzaimah, M., Abdul Kudus, S. I., Ahmad, M. N., & Shaharuzaman, M. A. (2022). Chemical treatment has an influence on the strengthening of recycle wood pp composite ( r-WoPPC ) filament. Proceedings of Mechanical Engineering Research Day 2022, 70-72.
Nasereddin, J. M., Wellner, N., Alhijjaj, M., Belton, P., & Qi, S. (2018). Development of a simple mechanical screening method for predicting the feedability of a pharmaceutical FDM 3D printing filament. Pharmaceutical Research, 35, Article 151. https://doi.org/10.1007/s11095-018-2432-3
Nasir, M. H. M., Taha, M. M., Razali, N., Ilyas, R. A., Knight, V. F., & Norrrahim, M. N. F. (2022). Effect of chemical treatment of sugar palm fibre on rheological and thermal properties of the PLA composites filament for FDM 3D printing. Materials, 15(22), Article 8082. https://doi.org/10.3390/ma15228082
Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172-196. https://doi.org/10.1016/j.compositesb.2018.02.012
Noryani, M., Sapuan, S. M., & Mastura, M. T. (2018). Multi-criteria decision-making tools for material selection of natural fibre composites: A review. Journal of Mechanical Engineering and Sciences, 12(1), 3330-3353. https://doi.org/10.15282/jmes.12.1.2018.5.0299
Noryani, M., Sapuan, S. M., Mastura, M. T., Zuhri, M. Y. M., & Zainudin, E. S. (2018). A statistical framework for selecting natural fibre reinforced polymer composites based on regression model. Fibers and Polymers, 19, 1039-1049. https://doi.org/10.1007/s12221-018-8113-3
Pang, N., Nan, M., Meng, Q., & Zhao, S. (2021). Selection of wind turbine based on fuzzy analytic network process: A case study in China. Sustainability (Switzerland), 13(4), Article 1792. https://doi.org/10.3390/su13041792
Pop, M. A., Croitoru, C., Bedő, T., Geaman, V., Radomir, I., Coșnița, M., Zaharia, S. M., Chicoș, L. A., & Miloșan, I. (2019). Structural changes during 3D printing of bioderived and synthetic thermoplastic materials. Journal of Applied Polymer Science, 136(17), Article 47382. https://doi.org/10.1002/app.47382
Rajendran Royan, N. R., Leong, J. S., Chan, W. N., Tan, J. R., & Shamsuddin, Z. S. B. (2021). Current state and challenges of natural fibre-reinforced polymer composites as feeder in fdm-based 3d printing. Polymers, 13(14), Article 2289. https://doi.org/10.3390/polym13142289
Reddy, T. B. (2013). Open access mechanical performance of green coconut fiber/HDPE composites. International Journal of Engineering Research and Applications, 3(6), 1262-1270.
Šafka, J., Ackermann, M., Bobek, J., Seidl, M., Habr, J., & Běhálek, L. (2016). Use of composite materials for FDM 3D print technology. Materials Science Forum, 862, 174-181. https://doi.org/10.4028/www.scientific.net/MSF.862.174
Safri, S. N. A., Sultan, M. T. H., Jawaid, M., & Jayakrishna, K. (2018). Impact behaviour of hybrid composites for structural applications: A review. Composites Part B: Engineering, 133, 112-121. https://doi.org/10.1016/j.compositesb.2017.09.008
Saltelli, A., Ratto, M., Tarantola, S., & Campolongo, F. (2005). Sensitivity analysis for chemical models. Chemical. Review, 105 (7), 2811-2828. https://doi.org/10.1021/cr040659d
Senvar, O., Vayvay, O., & Hamal, S. (2018). Selection of optimal renewable energy investment project via fuzzy ANP. Journal of Economics, Finance and Accounting, 5(2), 224-233. https://doi.org/10.17261/pressacademia.2018.827
Stoof, D., & Pickering, K. (2018). Sustainable composite fused deposition modelling filament using recycled pre-consumer polypropylene. Composites Part B: Engineering, 135, 110-118. https://doi.org/10.1016/j.compositesb.2017.10.005
Stoof, D., Pickering, K., & Zhang, Y. (2017). Fused deposition modelling of natural fibre/polylactic acid composites. Journal of Composites Science, 1(1), Article 8. https://doi.org/10.3390/jcs1010008
Velasquez, M., & Hester, P. (2013). An analysis of multi-criteria decision making methods. International Journal of Operations Research, 10(2), 56-66.
Vigneshwaran, S., Sundarakannan, R., John, K. M., Joel Johnson, R. D., Prasath, K. A., Ajith, S., Arumugaprabu, V., & Uthayakumar, M. (2020). Recent advancement in the natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production, 277, Article 124109. https://doi.org/10.1016/j.jclepro.2020.124109
Xanthos, M. (Ed). (2005). Functional Fillers for Plastics. Wiley. https://doi.org/10.1002/3527605096
Xiao, X., Chevali, V. S., Song, P., He, D., & Wang, H. (2019). Polylactide/hemp hurd biocomposites as sustainable 3D printing feedstock. Composites Science and Technology, 184, Article 107887. https://doi.org/10.1016/j.compscitech.2019.107887
Zavadskas, E. K., Antucheviciene, J., Turskis, Z., & Adeli, H. (2016). Hybrid multiple-criteria decision-making methods: A review of applications in engineering. Scientia Iranica, 23(1), 1-20. https://doi.org/10.24200/sci.2016.2093
ISSN 0128-7680
e-ISSN 2231-8526