e-ISSN 2231-8526
ISSN 0128-7680
Elin Elisa Khairul, Wan Atiyyah Ab Wahab, Lay Kek Teh, Mohd Zaki Salleh, Mohd Salleh Rofiee, Raja Mohammed Firhad Raja Azidin and Sarina Md. Yusof
Pertanika Journal of Science & Technology, Volume 31, Issue 2, March 2023
DOI: https://doi.org/10.47836/pjst.31.2.23
Keywords: Genetics, metabolomics, single nucleotide polymorphism, strength training, training response
Published on: 20 March 2023
Muscular power is one of the factors that contribute to an athlete’s performance. This study aimed to explore the predictive ability of total genotype score (TGS) and serum metabolite markers in power-based sports performance following different strength training (ST) intensities. We recruited 15 novice male field hockey players (age = 16.27 ± .12 years old, body mass index = 22.57 ± 2.21 kg/m2) and allocated them to; high-intensity strength training (HIST, n=5), moderate intensity strength (MIST, n=5), and control group (C, n=5). Both training groups completed an eight-week ST intervention. Pre- and post-training muscular power (vertical jump) was measured. The participants were genotyped for; ACE (rs1799752), ACTN3 (rs1815739), ADRB3 (rs4994), AGT (rs699), BDKRB2 (rs1799722), PPARA (rs4253778), PPARGC1A (rs8192678), TRHR (rs7832552), and VEGF (rs1870377). TGS was calculated to annotate for strength-power (STP) and endurance (END) qualities. Subsequently, serum metabolomics analysis was conducted using Liquid chromatography-mass spectrometry Quadrupole-Time-of-Flight (LC-MS QTOF) to profile differentially expressed metabolite changes induced by training. Multiple regression analysis was conducted to explore the ability of TGS and differentially expressed metabolite markers to predict muscular power changes following the intervention. Multiple Regression revealed that only TGS STP might be a significant predictor of muscular power changes following MIST (adjusted R2=.906, p<.05). Additionally, ST also resulted in significant muscular power improvement (p<.05) and perturbation of the sphingolipid metabolism pathway (p<.05). Therefore, selected gene variants may influence muscular power. Therefore, STP TGS might be able to predict muscular power changes following MIST.
Ahmetov, I. I., Egorova, E. S., Gabdrakhmanova, L. J., & Fedotovskaya, O. N. (2016). Genes and athletic performance: An update. Medicine and Sport Science, 61, 41-54. https://doi.org/10.1159/000445240
Amato, A., Messina, G., Contrò, V., Sacco, A., & Proia, P. (2018). Total genetic score: An instrument to improve the performance in the elite athletes. Acta Medica Mediterranea, 34(6), 1857-1862. https://doi.org/10.109193/0393-6384_2018_6_287
Assuncao, A. R., Bottaro, M., Ferreira-Junior, J. B., Izquierdo, M., Cadore, E. L., & Gentil, P. (2016). The chronic effects of low- and high-intensity resistance training on muscular fitness in adolescents. Public Library of Science, 11(8), 4-7. https://doi.org/10.1371/journal.pone.0160650
Astorino, T. A., Tam, P. A., Rietschel, J. C., Johnson, S. M., & Freedman, T. P. (2004). Changes in physical fitness parameters during a competitive field hockey season. Journal of Strength and Conditioning Research, 18(4), 850-854. https://doi.org/10.1519/13723.1
Bergman, B. C., Brozinick, J. T., Strauss, A., Bacon, S., Kerege, A., Bui, H. H., Sanders, P., Siddall, P., Kuo, M. S., & Perreault, L. (2015). Serum sphingolipids: relationships to insulin sensitivity and changes with exercise in humans. American Journal of Physiology-Endocrinology and Metabolism, 309(4), E398-E408. https://doi.org/10.1152/ajpendo.00134.2015
Bishop, C., Brazier, J., Cree, J., Turner, A. N., & Anthony, T. (2015). A needs analysis and testing battery for field hockey. Professional Strength and Conditioning, 36, 15-36.
Christou, M., Smilios, I., Sotiropoulos, K., Volaklis, K., Pilianidis, T., & Tokmakidis, S. P. (2006). Effects of resistance training on the physical capacities of adolescent soccer players. Journal of Strength and Conditioning Research, 20(4), 783-791. https://doi.org/10.1519/R-17254.1
de la Iglesia, R., Espinosa-Salinas, I., Lopez-Silvarrey, F. J., Ramos-Alvarez, J. J., Segovia, J. C., Colmenarejo, G., Borregon-Rivilla, E., Marcos-Pasero, H., Aguilar-Aguilar, E., Loria-Kohen, V., Reglero, G., & Ramirez-de Molina, A. (2020). A potential endurance algorithm prediction in the field of sports performance. Frontiers in Genetics, 11, 1-11. https://doi.org/10.3389/fgene.2020.00711
Egorova, E. S., Borisova, A. V., Mustafina, L. J., Arkhipova, A. A., Gabbasov, R. T., Druzhevskaya, A. M., Astratenkova, I. V., & Ahmetov, I. I. (2014). The polygenic profile of Russian football players. Journal of Sports Sciences, 32(13), 1286-1293. https://doi.org/10.1080/02640414.2014.898853
Ibrahim Hassan. I., H. (2018). Relationship between strength, speed, and change direction performance in field hockey players. MOJ Sports Medicine, 2(1), 54-58. https://doi.org/10.15406/mojsm.2018.03.00046
Jones, N., Kiely, J., Suraci, B., Collins, D. J., Lorenzo, D. D., Pickering, C., & Grimaldi, K. A. (2016). A genetic-based algorithm for personalized resistance training. Biology of Sport, 33(2), 117-126. https://doi.org/10.5604/20831862.1198210
Juárez, D., González-Ravé, J. M., & Navarro, F. (2009). Effects of complex vs. non-complex training programs on lower body maximum strength and power. Isokinetics and Exercise Science, 17(4), 233-241. https://doi.org/10.3233/IES-2009-0359
Kelly, R. S., Kelly, M. P., & Kelly, P. (2020). Metabolomics, physical activity, exercise and health: A review of the current evidence. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1866(12), 1-17. https://doi.org/10.1016/j.bbadis.2020.165936
Kikuchi, N., Honma, H., & Nakazato, K. (2019). Effect of gene polymorphisms on sensitivity to resistance training. In D. Barh & I. Ahmetov (Eds.), Sports, Exercise, and Nutritional Genomics: Current Status and Future Directions (pp. 189-209). Elsevier Inc. https://doi.org/10.1016/B978-0-12-816193-7.00009-9
Klemp, A., Dolan, C., Quiles, J. M., Blanco, R., Zoeller, R. F., Graves, B. S., & Zourdos, M. C. (2016). Volume-equated high- and low-repetition daily undulating programming strategies produce similar hypertrophy and strength adaptations. Applied Physiology, Nutrition and Metabolism, 41(7), 699-705. https://doi.org/10.1139/apnm-2015-0707
Kobal, R., Loturco, I., Barroso, R., Gil, S., Cuniyochi, R. R., Ugrinowitsch, C., Roschel, H., & Tricoli, V. (2017). Effects of different combinations of strength, power, and plyometric training on the physical performance of elite young soccer players. Journal of Strength and Conditioning Research, 31(6), 1468-1476. https://doi.org/10.1519/JSC.0000000000001609
Konarski, J., Krzykała, M., Podgórski, T., Pawlak, M., Strzelczyk, R., & Malina, R. M. (2012). Variations in functional and morphological characteristics of elite polish field hockey players in a complete macrocycle. International Journal of Sports Science and Coaching, 7(3), 527-541. https://doi.org/10.1260/1747-9541.7.3.527
Laursen, P. B. (2010). Training for intense exercise performance: High-intensity or high-volume training? Scandinavian Journal of Medicine & Science in Sports, 20(Suppl. 2), 1-10. https://doi.org/10.1111/j.1600-0838.2010.01184.x
Lemmink, K. A. P. M., & Visscher, S. H. (2006). Role of energy systems in two intermittent field tests in women field hockey players. The Journal of Strength and Conditioning Research, 20(4), 682-688. https://doi.org/10.1519/R-17124.1
Lemos, R. S., Paz, G. A., Freitas Maia, M. de, Baptista da Silva, J., Lima, V. P., Brandão Pinto de Castro, J., & Miranda, H. (2017). Anthropometric and physical fitness parameters versus specific performance tests in Brazilian field hockey athletes: A pilot study. Biomedical Human Kinetics, 9(1), 57-63. https://doi.org/10.1515/bhk-2017-0009
Lesinski, M., Prieske, O., & Granacher, U. (2016). Effects and dose-response relationships of resistance training on physical performance in youth athletes: A systematic review and meta-analysis. British Journal of Sports Medicine, 50(13), 781-795. https://doi.org/10.1136/bjsports-2015-095497
Mangine, G. T., Hoffman, J. R., Gonzalez, A. M., Townsend, J. R., Wells, A. J., Jajtner, A. R., Beyer, K. S., Boone, C. H., Miramonti, A. A., Wang, R., LaMonica, M. B., Fukuda, D. H., Ratamess, N. A., & Stout, J. R. (2015). The effect of training volume and intensity on improvements in muscular strength and size in resistance-trained men. Physiological Reports, 3(8), 1-17. https://doi.org/10.14814/phy2.12472
Massidda, M., Calò, C. M., Cięszczyk, P., Kikuchi, N., Ahmetov, I. I., & Williams, A. G. (2019). Genetics of team sports. In D. Barh & I. Ahmetov (Eds.) Sports, Exercise, and Nutritional Genomics (pp. 105-128). Elsevier Inc. https://doi.org/10.1016/b978-0-12-816193-7.00005-1
McKinlay, B. J., Wallace, P., Dotan, R., Long, D., Tokuno, C., Gabriel, D. A., & Falk, B. (2018). Effects of plyometric and resistance training on muscle strength, explosiveness, and neuromuscular function in young adolescent soccer players. Journal of Strength and Conditioning Research, 32(11), 3039-3050. https://doi.org/10.1519/JSC.0000000000002428
Morville, T., Sahl, R. E., Moritz, T., Helge, J. W., & Clemmensen, C. (2020). Plasma metabolome profiling of resistance exercise and endurance exercise in humans. Cell Reports, 33(13), Article 108554. https://doi.org/10.1016/j.celrep.2020.108554
Murtagh, C. F., Brownlee, T. E., Rienzi, E., Roquero, S., Moreno, S., Huertas, G., Lugioratto, G., Baumert, P., Turner, D. C., Lee, D., Dickinson, P., Amber Lyon, K., Sheikhsaraf, B., Biyik, B., O’Boyle, A., Morgans, R., Massey, A., Drust, B., & Erskine, R. M. (2020). The genetic profile of elite youth soccer players and its association with power and speed depends on maturity status. PLoS ONE, 15(6 June), 1-24. https://doi.org/10.1371/journal.pone.0234458
Nikolova-Karakashian, M. N., & Reid, M. B. (2011). Sphingolipid metabolism, oxidant signaling, and contractile function of skeletal muscle. Antioxidants and Redox Signaling, 15(9), 2501-2517. https://doi.org/10.1089/ars.2011.3940
Pickering, C., Kiely, J., Grgic, J., Lucia, A., & Del Coso, J. (2019). Can genetic testing identify talent for sport? Genes, 12(2), 1-15. https://doi.org/10.3390/genes10120972
Pimenta, E. M., Coelho, D. B., Cruz, I. R., Morandi, R. F., Veneroso, C. E., De Azambuja Pussieldi, G., Carvalho, M. R. S., Silami-Garcia, E., & De Paz Fernández, J. A. (2012). The ACTN3 genotype in soccer players in response to acute eccentric training. European Journal of Applied Physiology, 112(4), 1495-1503. https://doi.org/10.1007/s00421-011-2109-7
Ruiz, J. R., Arteta, D., Buxens, A., Artieda, M., Gómez-Gallego, F., Santiago, C., Yvert, T., Moran, M., & Lucia, A. (2010). Can we identify a power-oriented polygenic profile? Journal of Applied Physiology, 108(3), 561-566. https://doi.org/10.1152/japplphysiol.01242.2009
Ruiz, J. R., Gómez-Gallego, F., Santiago, C., González-Freire, M., Verde, Z., Foster, C., & Lucia, A. (2009). Is there an optimum endurance polygenic profile? Journal of Physiology, 587(7), 1527-1534. https://doi.org/10.1113/jphysiol.2008.166645
Sarin, H. V., Ahtiainen, J. P., Hulmi, J. J., Ihalainen, J. K., Walker, S., Küüsmaa-Schildt, M., Perola, M., & Peltonen, H. (2019). Resistance training induces antiatherogenic effects on metabolomic pathways. Medicine and Science in Sports and Exercise, 51(9), 1866-1875. https://doi.org/10.1249/MSS.000000000000203
Sarzynski, M. A., Loos, R. J. F., Lucia, A., Pérusse, L., Roth, S. M., Wolfarth, B., Rankinen, T., & Bouchard, C. (2016). Advances in exercise, fitness, and performance genomics in 2015. Medicine and Science in Sports and Exercise, 48(10), 1906-1916. https://doi.org/10.1249/MSS.0000000000000982
Sayers, S. P., Harackiewicz, D. V, Harman, E. A., Frykman, P. N., & Rosenstein, M. T. (1999). Cross-validation of three jump power equations. Medicine and Science in Sports and Exercise, 31(4), 572-577. https://doi.org/10.1097/00005768-199904000-00013
Shepherd, S. O., Cocks, M., Tipton, K. D., Witard, O. C., Ranasinghe, A. M., Barker, T. A., Wagenmakers, A. J. M., & Shaw, C. S. (2014). Resistance training increases skeletal muscle oxidative capacity and net intramuscular triglyceride breakdown in type I and II fibres of sedentary males. Experimental Physiology, 99(6), 894-908. https://doi.org/10.1113/expphysiol.2014.078014
Suraci, B. R., Quigley, C., Thelwell, R. C., & Milligan, G. S. (2021). A comparison of training modality and total genotype scores to enhance sport-specific biomotor abilities in under 19 male soccer players. Journal of Strength and Conditioning Research, 35(1), 154-161. https://doi.org/10.1519/JSC.0000000000003299
Tanisawa, K., Wang, G., Seto, J., Verdouka, I., Twycross-Lewis, R., Karanikolou, A., Tanaka, M., Borjesson, M., Di Luigi, L., Dohi, M., Wolfarth, B., Swart, J., Bilzon, J. L. J., Badtieva, V., Papadopoulou, T., Casasco, M., Geistlinger, M., Bachl, N., Pigozzi, F., & Pitsiladis, Y. (2020). Sport and exercise genomics: The FIMS 2019 consensus statement update. British Journal of Sports Medicine, 54(16), 969-975. https://doi.org/10.1136/bjsports-2019-101532
Varillas-Delgado, D., Del Coso, J., Gutiérrez-Hellín, J., Aguilar-Navarro, M., Muñoz, A., Maestro, A., & Morencos, E. (2022). Genetics and sports performance: The present and future in the identification of talent for sports based on DNA testing. European Journal of Applied Physiology, 122, 1811-1830. https://doi.org/10.1007/s00421-022-04945-z
Wetmore, A. B., Moquin, P. A., Carroll, K. M., Fry, A. C., Hornsby, W. G., & Stone, M. H. (2020). The effect of training status on adaptations to 11 weeks of block periodization training. Sports, 8(11), 1-12. 10.3390/sports8110145
Wishart, D. S. (2019). Metabolomics for investigating physiological and pathophysiological processes. Physiological Reviews, 99(4), 1819-1875. https://doi.org/10.1152/physrev.00035.2018
Yingling, V. R., Castro, D. A., Duong, J. T., Malpartida, F. J., Usher, J. R., & O, J. (2018). The reliability of vertical jump tests between the Vertec and My Jump phone application. PeerJ, 6(4), 1-13. https://doi.org/10.7717/peerj.4669
ISSN 0128-7680
e-ISSN 2231-8526