Home / Regular Issue / JST Vol. 30 (3) Jul. 2022 / JST-3352-2021

 

Mechanical Properties of Natural Fibre Reinforced Geopolymer Composites: A Review

Noor Abbas Al-Ghazali, Farah Nora Aznieta Abdul Aziz, Khalina Abdan and Noor Azline Mohd Nasir

Pertanika Journal of Science & Technology, Volume 30, Issue 3, July 2022

DOI: https://doi.org/10.47836/pjst.30.3.16

Keywords: Fibres, geopolymer composites, mechanical properties, natural fibres

Published on: 25 May 2022

The cement production consumes many natural resources and energy, pollutes the environment, and cannot meet the current building materials’ green and sustainable development requirements. Therefore, geopolymers have gained popularity as cement replacements in recent years. Geopolymers have promising characteristics such as low energy consumption and carbon footprint, valuable compressive strength, fire resistance, flame resistance and good durability. However, these materials suffer from low tensile and flexural strength. Hence, fibres are added to overcome these issues and enhance their toughness index. Natural fibres are biodegradable, low-cost, renewable materials and widely available in many countries. This article reviewed previous Natural Fibre Reinforced Geopolymer Composites (NFRGC) studies, focusing on compressive strength, tensile and flexural strengths, and toughness. In addition, the available literature on the effect of the treatment methods of natural fibres on the mechanical properties of NFRGC has been addressed. The findings indicate that adding the appropriate type and content of natural fibres to geopolymer composites can enhance their mechanical properties. However, more attention should be paid to the effects of the pre-treatment of natural fibres on the performance of NFRGC.

  • Abbas, A. N., Nora, F., Abdul, A., Abdan, K., Azline, N., Nasir, M., & Norizan, M. N. (2022). Kenaf fibre reinforced cementitious composites. Fibers, 10, 1-24.

  • Abbass, M., Singh, D., & Singh, G. (2021). Properties of hybrid geopolymer concrete prepared using rice husk ash, fly ash and GGBS with coconut fiber. Materials Today: Proceedings, 45, 4964-4970. https://doi.org/10.1016/j.matpr.2021.01.390

  • Abbass, M., & Singh, G. (2021). Impact strength of rice husk ash and basalt fibre based sustainable geopolymer concrete in rigid pavements. Materials Today: Proceedings, 1-8. https://doi.org/10.1016/j.matpr.2021.09.053

  • Abdulmuttaleb, M., Yaltay, N., & Türkmeno, M. (2022). Properties of pumice-fly ash based geopolymer paste. Construction and Building Materials, 316, 1-10. https://doi.org/10.1016/j.conbuildmat.2021.125665

  • Alomayri, T., & Low, I. M. (2013). Synthesis and characterization of mechanical properties in cotton fiber-reinforced geopolymer composites. Journal of Asian Ceramic Societies, 1(1), 30-34. https://doi.org/10.1016/j.jascer.2013.01.002

  • Alomayri, T., Shaikh, F. U. A., & Low, I. M. (2014). Effect of fabric orientation on mechanical properties of cotton fabric reinforced geopolymer composites. Materials and Design, 57, 360-365. https://doi.org/10.1016/j.matdes.2014.01.036

  • Alshaaer, M. (2021). Synthesis, characterization, and recyclability of a functional jute-based geopolymer composite. Frontiers in Built Environment, 7(March), 1-13. https://doi.org/10.3389/fbuil.2021.631307

  • Alzeer, M., & MacKenzie, K. J. D. (2012). Synthesis and mechanical properties of new fibre-reinforced composites of inorganic polymers with natural wool fibres. Journal of Materials Science, 47(19), 6958-6965. https://doi.org/10.1007/s10853-012-6644-3

  • Assaedi, H, Shaikh, F. U. A., & Low, I. M. (2016). Characterizations of flax fabric reinforced nanoclay-geopolymer composites. Composites Part B, 95, 412-422. https://doi.org/10.1016/j.compositesb.2016.04.007

  • Assaedi, H., Alomayri, T., Shaikh, F., & Low, I. M. (2019). Influence of nano silica particles on durability of flax fabric reinforced geopolymer composites. Materials, 12(9), 1-14. https://doi.org/10.3390/ma12091459

  • Assaedi, H., Alomayri, T., Shaikh, F. U. A., & Low, I. (2015). Characterisation of mechanical and thermal properties in flax fabric reinforced geopolymer composites. Journal of Advanced Ceramics, 4(4), 272-281. https://doi.org/10.1007/s40145-015-0161-1

  • Ayub, M., Othman, M. H. D., Khan, I. U., Hubadillah, S. K., Kurniawan, T. A., Ismail, A. F., Rahman, M. A., & Jaafar, J. (2021). Promoting sustainable cleaner production paradigms in palm oil fuel ash as an eco-friendly cementitious material: A critical analysis. Journal of Cleaner Production, 295, Article 126296. https://doi.org/10.1016/j.jclepro.2021.126296

  • Bellum, R. R. (2021). Influence of steel and PP fibers on mechanical and microstructural properties of fly ash-GGBFS based geopolymer composites. Ceramics International, 48(5), 6808-6818. https://doi.org/10.1016/j.ceramint.2021.11.232

  • Chen, R., Ahmari, S., & Zhang, L. (2014). Utilization of sweet sorghum fiber to reinforce fly ash-based geopolymer. Journal of Materials Science, 49(6), 2548-2558. https://doi.org/10.1007/s10853-013-7950-0

  • Chen, X., Zhang, J., Lu, M., Chen, B., Gao, S., Bai, J., Zhang, H., & Yang, Y. (2022). Study on the effect of calcium and sulfur content on the properties of fly ash based geopolymer. Construction and Building Materials, 314(PB), Article 125650. https://doi.org/10.1016/j.conbuildmat.2021.125650

  • Chindaprasirt, P., Jitsangiam, P., Chalee, W., & Rattanasak, U. (2021). Case study of the application of pervious fly ash geopolymer concrete for neutralization of acidic wastewater. Case Studies in Construction Materials, 15, Article e00770. https://doi.org/10.1016/j.cscm.2021.e00770

  • Fang, G., Ho, W. K., Tu, W., & Zhang, M. (2018). Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature. Construction and Building Materials, 172, 476-487. https://doi.org/10.1016/j.conbuildmat.2018.04.008

  • Farhan, N. A., Sheikh, M. N., & Hadi, M. N. S. (2018). Behaviour of ambient cured steel fibre reinforced geopolymer concrete columns under axial and flexural loads. Structures, 15, 184-195. https://doi.org/10.1016/j.istruc.2018.07.001

  • Filho, J. D. A. M., Silva, F. D. A., & Filho, R. D. T. (2013). Degradation kinetics and aging mechanisms on sisal fiber cement composite systems. Cement and Concrete Composites, 40, 30-39. https://doi.org/10.1016/j.cemconcomp.2013.04.003

  • Ganesh, A. C., & Muthukannan, M. (2021). Development of high performance sustainable optimized fiber reinforced geopolymer concrete and prediction of compressive strength. Journal of Cleaner Production, 282, Article 124543. https://doi.org/10.1016/j.jclepro.2020.124543

  • Gopalakrishnan, R., & Chinnaraju, K. (2019). Durability of ambient cured alumina silicate concrete based on slag / fly ash blends against sulfate environment. Construction and Building Materials, 204, 70-83. https://doi.org/10.1016/j.conbuildmat.2019.01.153

  • Gupta, A. (2021). Investigation of the strength of ground granulated blast furnace slag based geopolymer composite with silica fume. Materials Today: Proceedings, 44, 23-28. https://doi.org/10.1016/j.matpr.2020.06.010

  • Islam, M. S., & Ju, S. (2018). Influence of jute fiber on concrete properties. Construction and Building Materials, 189, 768-776. https://doi.org/10.1016/j.conbuildmat.2018.09.048

  • Jawahar, J. G., Lavanya, D., & Sashidhar, C. (2016). Performance of fly ash and GGBS based geopolymer concrete in acid environment. International Journal of Research and Scientific Innovation, 3(8), 101-104.

  • Kavipriya, S., Deepanraj, C. G., Dinesh, S., Prakhash, N., Lingeshwaran, N., & Ramkumar, S. (2021). Flexural strength of Lightweight geopolymer concrete using sisal fibres. Materials Today: Proceedings, 47, 5503-5507. https://doi.org/10.1016/j.matpr.2021.08.135

  • Korniejenko, K., Fr, E., Pytlak, E., & Adamski, M. (2016). Mechanical properties of geopolymer composites reinforced with natural fibers. Procedia Engineering, 151, 388-393. https://doi.org/10.1016/j.proeng.2016.07.395

  • Liang, G., Zhu, H., Li, H., Liu, T., & Guo, H. (2021). Comparative study on the effects of rice husk ash and silica fume on the freezing resistance of metakaolin-based geopolymer. Construction and Building Materials, 293, Article 123486. https://doi.org/10.1016/j.conbuildmat.2021.123486

  • Maichin, P., Suwan, T., Jitsangiam, P., & Chindaprasirt, P. (2020). Hemp fiber reinforced geopolymer composites: Effects of NaOH concentration on fiber pre-treatment process. Key Engineering Materials, 841, 166-170. https://doi.org/10.4028/www.scientific.net/KEM.841.166

  • Malenab, R. A. J., Ngo, J. P. S., & Promentilla, M. A. B. (2017). Chemical treatment of waste abaca for natural fiber-Reinforced geopolymer composite. Materials, 10(6), Article 579. https://doi.org/10.3390/ma10060579

  • Pauline, J. N. S. J., & Angelo, P. B. M. (2018). Development of abaca fiber-reinforced foamed fly ash geopolymer. MATEC Web of Conferences, 156, 1-8. https://doi.org/10.1051/matecconf/201815605018

  • Silva, G., Kim, S., Bertolotti, B., Nakamatsu, J., & Aguilar, R. (2020). Optimization of a reinforced geopolymer composite using natural fibers and construction wastes. Construction and Building Materials, 258, Article 119697. https://doi.org/10.1016/j.conbuildmat.2020.119697

  • Suwan, T., Maichin, P., Fan, M., Jitsangiam, P., Tangchirapat, W., & Chindaprasirt, P. (2022). Influence of alkalinity on self-treatment process of natural fiber and properties of its geopolymeric composites. Construction and Building Materials, 316, Article 125817. https://doi.org/10.1016/j.conbuildmat.2021.125817

  • Wongsa, A., Kunthawatwong, R., Naenudon, S., & Sata, V. (2020). Natural fiber reinforced high calcium fly ash geopolymer mortar. Construction and Building Materials, 241, Article 118143. https://doi.org/10.1016/j.conbuildmat.2020.118143

  • Yanou, R. N., Kaze, R. C., Adesina, A., Nemaleu, J. G. D., Jiofack, S. B. K., & Djobo, J. N. Y. (2021). Performance of laterite-based geopolymers reinforced with sugarcane bagasse fibers. Case Studies in Construction Materials, 15, Article e00762. https://doi.org/10.1016/j.cscm.2021.e00762

  • Yasaswini, K., & Rao, A. V. (2020). Behaviour of geopolymer concrete at elevated temperature. Materials Today: Proceedings, 33(1), 239-244. https://doi.org/10.1016/j.matpr.2020.03.833

  • Zhang, N., Ye, H., Pan, D., & Zhang, Y. (2021). Effects of alkali-treated kenaf fiber on environmentally friendly geopolymer-kenaf composites: Black liquid as the regenerated activator of the geopolymer. Construction and Building Materials, 297, Article 123787. https://doi.org/10.1016/j.conbuildmat.2021.123787

  • Zhang, P., Wang, K., Li, Q., Wang, J., & Ling, Y. (2020). Fabrication and engineering properties of concretes based on geopolymers/alkali-activated binders - A review. Journal of Cleaner Production, 258, Article 120896. https://doi.org/10.1016/j.jclepro.2020.120896

  • Zulfiati, R., & Idris, Y. (2019). Mechanical properties of fly ash-based geopolymer with natural fiber mechanical properties of fly ash-based geopolymer with natural fiber. Journal of Physics: Conference Series, 1198(8), Article 082021. https://doi.org/10.1088/1742-6596/1198/8/082021

  • Zulfiati, R., Saloma, & Idris, Y. (2020). The nature of coconut fibre fly ash-based mechanical geopolymer. IOP Conference Series: Materials Science and Engineering, 807, Article 012041. https://doi.org/10.1088/1757-899X/807/1/012041

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

JST-3352-2021

Download Full Article PDF

Share this article

Recent Articles