Home / Regular Issue / JST Vol. 30 (1) Jan. 2022 / JST-2820-2021

 

Pectinase Production from Banana Peel Biomass via the Optimization of the Solid-state Fermentation Conditions of Aspergillus niger Strain

Nazaitulshila Rasit, Yong Sin Sze, Mohd Ali Hassan, Ooi Chee Kuan, Sofiah Hamzah, Wan Rafizah Wan Abdullah@Wan Abd. Rahman and Md. Nurul Islam Siddique

Pertanika Journal of Science & Technology, Volume 30, Issue 1, January 2022

DOI: https://doi.org/10.47836/pjst.30.1.14

Keywords: Banana peel, biomass, full factorial design, optimization, pectinase, solid-state fermentation

Published on: 10 January 2022

In this study, the biomass of banana peel was used to produce pectinase via optimization of solid-state fermentation conditions of the filamentous fungi Aspergillus nigeA. niger). The operating conditions of solid-state fermentation were optimized using the method of full factorial design with incubation temperature ranging between 25 °C and 35 °C, moisture content between 40% and 60%, and inoculum size between 1.6 x 106 spores/mL and 1.4 x 107 spores/mL. Optimizing the solid-state fermentation conditions appeared crucial to minimize the sample used in this experimental design and determine the significant correlation between the operating conditions. A relatively high maximal pectinase production of 27 UmL-1 was attained at 35° C of incubation, 60% of moisture content, and 1.6 x 106 spores/mL of inoculum size with a relatively low amount of substrate (5 g). Given that the production of pectinase with other substrates (e.g., pineapple waste, lemon peel, cassava waste, and wheat bran) generally ranges between 3 U/mL and 16 U/mL (Abdullah et al., 2018; Handa et al., 2016; Melnichuk et al., 2020; Thangaratham and Manimegalai, 2014; Salim et al., 2017), thus the yield of pectinase derived from the banana peel in this study (27 U/mL) was considered moderately high. The findings of this study indicated that the biomass of banana peel would be a potential substrate for pectinase production via the solid-state fermentation of A. niger.

  • Abdullah, R., Jafer, A., Nisar, K., Kaleem, A., Iqtedar, M., Iftikhar, T., Saleem, F., & Naz, S. (2018). Process optimization for pectinase production by locally isolated fungal strain. Bioscience Journal, 34(4), 1025-1032. https://doi.org/10.14393/BJ-v34n1a2018-39947

  • Aggarwal, R., Dutta, T., & Sheikh, J. (2020). Extraction of pectinase from Candida isolated from textile mill effluent and its application in bio-scouring of cotton. Sustainable Chemistry and Pharmacy, 17, Article 100291. https://doi.org/10.1016/j.scp.2020.100291

  • Al-Rousan, W. M., Al-Marazeeq, K., Abdullah, M. A., Khalaileh, N., & Ajo, R. Y. (2019). Use enzymatic preparations to enhance olive oil extraction and their quality. Journal of Food and Nutrition Research, 7(4), 311-318. https://doi:10.12691/jfnr-7-4-8

  • Awad, G. E. A., Elnashar, M. M. M., & Danial, E. N. (2011). Optimization of phytase production by Penicillium funiculosum NRC467 under solid state fermentation by using full factorial design. World Applied Sciences Journal, 15(11), 1635-1644. https://doi.org/10.1016/j.sjbs.2013.06.004

  • Ayed, L., Ksibi, I., Cheref, A., & Bakhrouf, A. (2012). Response surface methodology for optimization of the treatment of textile wastewater by a novel bacterial consortium: Enzymes and metabolites characterization. Journal of Biotechnology, 11(59), 12339-12355. https://doi:10.5897/AJB11.3506

  • Bouchekara, H. R. E. H., Boucherma, M., & Allag, H. (2011). Interactive implementation of experimental design method-application to engineering optimal design. American Journal of Computational and Applied Mathematics, 1(2), 78-85. https://doi:10.5923/j.ajcam.20110102.15

  • Caporaso, N. (2016). Virgin olive oils: Environmental conditions, agronomical factors and processing technology affecting the chemistry of flavor profile. Journal of Food Chemistry & Nanotechnology, 2(1), 21-31. https://doi:10.17756/jfcn.2016-007

  • Cerreti, M., Liburdi, K., Benucci, I., & Esti, M. (2016). The effect of pectinase and protease treatment on turbidity and on haze active molecules in pomegranate juice. LWT-Food Science and Technology, 73, 326-333. https://doi.org/10.1016/j.lwt.2016.06.030

  • Dal Magro, L., Silveira, V. C. C., de Menezes, E. W., Benvenutti, E. V., Nicolodi, S., Hertz, P. F., & Rodrigues, R. C. (2018). Magnetic biocatalysts of pectinase and cellulase: Synthesis and characterization of two preparations for application in grape juice clarification. International Journal of Biological Macromolecules, 115, 35-44. https://doi.org/10.1016/j.ijbiomac.2018.04.028

  • Doriya, K., Jose, N., Gowda, M., & Kumar, D. S. (2016). Solid-state fermentation vs submerged fermentation for the production of l-Asparaginase. Advances in Food and Nutrition Research, 78, 115-135. https://doi:10.1016/bs.afnr.2016.05.003

  • El Enshasy, H. A., Elsayed, E. A., Suhaimi, N., Malek, R. A., & Esawy, M. (2018). Bioprocess optimization for pectinase production using Aspergillus niger in a submerged cultivation system. BMC Biotechnology, 18(71), 1-13. https://doi:10.1186/s12896-018-0481-7

  • El-Zaher, A. A., & Mahrouse, M. A. (2013). A validated spectrofluorimetric method for the determination of nifuroxazide through coumarin formation using experimental design. Chemistry Central Journal, 7, 90-102. https://doi: 10.1186/1752-153X-7-90.

  • Erdem, A., & Bahtiyari, M. I. (2018). Ultrasonic-bioscouring and ozone based bleaching of cotton slivers and coloration of them with natural dye sources. Journal of Cleaner Production, 188, 670-677. https://doi.org/10.1016/j.jclepro.2018.03.166

  • Handa, S., Sharma, N., & Pathania, S. (2016). Multiple parameter optimization for maximization of pectinase production by Rhizopus sp. C4 under solid state fermentation. Fermentation, 2(4), Article 10. https://doi.org/10.3390/fermentation2020010

  • Hank, D., Azi, Z., Hocine, S. A., Chaalal, O., & Hellal, A. (2014). Optimization of phenol adsorption onto bentonite by factorial design methodology. Journal of Industrial and Engineering Chemistry, 20, 2256-2263. https://doi.org/10.1016/j.jiec.2013.09.058

  • Hasan, S. H., Srivastava, P., & Talat, M. (2009). Biosorption of Pb (II) from water using biomass of Aeromonas hydrophilia: Central composite design for optimization of process variables. Journal of Hazardous Materials, 168, 1155-1162. https://doi.org/10.1016/j.jhazmat.2009.02.142

  • Jayani, R. S., Saxena, S., & Gupta, R. (2005). Microbial pectinolytic enzymes: A review. Process Biochemistry, 40, 2931-2944. https://doi.org/10.1016/j.procbio.2005.03.026

  • Kamaruddin, M. A., Ibrahim, M. H., Thung, L. M., Emmanuel, M. I., Niza, N. M., Shadi, A. M. H., & Norashiddin, F. A. (2019). Sustainable synthesis of pectinolytic enzymes from citrus and Musa acuminata peels for biochemical oxygen demand and grease removal by batch protocol. Applied Water Science, 9(4), 1-10. https://doi:10.1007/s13201-019-0948-2

  • Kapilan, R. (2015). Solid state fermentation for microbial products: A review. Archives of Applied Science Research, 7(8), 21-25.

  • Kukreja, A., Chopra, P., Aggarwal, A., & Khanna, P. (2011). Application of full factorial design for optimization of feed rate of stationary hook hopper. International Journal of Modeling and Optimization, 1(3), 205-209.

  • Manpreet, S., Sawraj, S., & Sachin, D. (2005). Influence of process parameters on the production of metabolites in solid-state fermentation. Malaysian Journal of Microbiology, 1(2), 1-9.

  • Mansor, A., Ramlia, M. S., Rashida, N. Y. A., Samat, N., Lani, M. N., Sharifudin, S. A., & Raseetha, S. (2019). Evaluation of selected agri-industrial residues as potential substrates for enhanced tannase production via solid-state fermentation. Biocatalysis and Agricultural Biotechnology, 20, Article 101216. https://doi.org/10.1016/j.bcab.2019.101216

  • Mekhilef, S., Saidur, R., Safari, A., & Mustaffa, W. E. S. B. (2011). Biomass energy in Malaysia: Current state and prospects. Renewable and Sustainable Energy Reviews, 15(7), 3360-3370.

  • Melnichuk, N., Braia, M. J., Anselmi, P. A., Meini, M. R., & Romanini, D. (2020). Valorization of two agroindustrial wastes to produce alpha-amylase enzyme from Aspergillus oryzae by solid-state fermentation. Waste Management, 106, 155-161. https://doi.org/10.1016/j.rser.2011.04.016

  • Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428. https://doi.org/10.1021/ac60147a030

  • Mohapatra, D., Mishra, S., & Sutar, N. (2010). Banana and its by-product utilization: An overview. Journal of Scientific & Industrial Research, 69, 323-329.

  • Pandey, A., Soccol, C. R., & Rodriguez-Leon, J. A. (2001). Aspects of design of fermenter in solid-state fermentation. Solid-state fermentation in Biotechnology: Fundamentals and Application (1st Ed.). Asistech Publishers.

  • Regti, A., El Kassimi, A., Laamari, M. R., & El Haddad, M. (2017). Competitive adsorption and optimization of binary mixture of textiles dyes: A factorial design analysis. Journal of the Association of Arab Universities for Basic and Applied Sciences, 24, 1-9. https://doi.org/10.1016/j.jaubas.2016.07.005

  • Ribeiro, D. S., Henrique, S., Oliveira, L. S., Macedo, G. A., & Fleuri, L. F. (2010). Enzymes in juice processing: A review. International Journal of Food Science Technology, 45(4), 635-641. https://doi.org/10.1111/j.1365-2621.2010.02177.x

  • Salim, A. A., Grbavčić, S., Šekuljica, N., Stefanović, A., Tanasković, S. J., Luković, N., & Knežević-Jugović, Z. (2017). Production of enzymes by a newly isolated Bacillus sp. TMF-1 in solid state fermentation on agricultural by-products: The evaluation of substrate pretreatment methods. Bioresource Technology, 228, 193-200. https://doi.org/10.1016/j.biortech.2016.12.081

  • Sandoval-Contreras, T., Marín, S., Villarruel-López, A., Gschaedler, A., Garrido-Sánchez, L., & Ascensio, F. (2017). Growth modeling of Aspergillus niger strains isolated from citrus fruit as a funtion of temperature on a synthetic medium from lime (Citrus Iatifolia T.) Pericarp. Journal of Food Production, 80(7), 1090-1098. https://doi:10.4315/0362-028X.JFP-16-408

  • Sudeep, K. C., Upadhyaya, J., Joshi, D. R., Lekhak, B., Chaudhary, D. K., Pant, B. R., & Raghavan, V. (2020). Production, characterization, and industrial application of pectinase enzyme isolated from fungal strains. Fermentation, 6(2), Article 59. https://doi:10.3390/fermentation6020059

  • Thangaratham, T., & Manimegalai, G. (2014). Optimization and production of pectinase using agro waste by solid state and submerged fermentation. International Journal of Current Microbiology and Applied Science, 3(9), 357-365.

  • Van Hecke, T. (2016). Pareto plot threshold for multiple management factors in design of experiments. Journal of Statistics and Management Systems, 20(2), 235-244. https://doi.org/10.1080/09720510.2016.1231967

  • Webb, C., & Manan, M. A., (2017). Design aspects of solid state fermentation as applied to microbial bioprocessing. Journal of Applied Biotechnology & Bioengineering, 4(1), 511-532. https://doi: 10.15406/jabb.2017.04.00094

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-2820-2021

Download Full Article PDF

Share this article

Recent Articles