J
Pertanika Proceedings, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Abdulrahman, H., Muhamad, R., Visintin, P., & Shukri, A. A. (2022). Mechanical properties and bond stress-slip behaviour of fly ash geopolymer concrete. Construction and Building Materials, 327, Article 126909. https://doi.org/10.1016/j.conbuildmat.2022.126909
Afroughsabet, V., & Ozbakkaloglu, T. (2015). Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Construction and Building Materials, 94, 73-82. https://doi.org/10.1016/j.conbuildmat.2015.06.051
Agusril, S. T., Nor, N. M., & Zhao, Z. J. (2012). Failure analysis of Carbon Fiber Reinforced Polymer (CFRP) bridge using composite material failure theories. In Advanced Materials Research (Vol. 488, pp. 525-529). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMR.488-489.525
Akid, A. S. M., Hossain, S., Munshi, M. I. U., Elahi, M. M. A., Sobuz, M. H. R., Tam, V. W. Y., & Islam, M. S. (2021). Assessing the influence of fly ash and polypropylene fiber on fresh, mechanical and durability properties of concrete. Journal of King Saud University-Engineering Sciences, 1-11. https://doi.org/10.1016/j.jksues.2021.06.005
Arulmoly, B., Konthesingha, C., & Nanayakkara, A. (2021). Performance evaluation of cement mortar produced with manufactured sand and offshore sand as alternatives for river sand. Construction and Building Materials, 297, Article 123784. https://doi.org/10.1016/j.conbuildmat.2021.123784
ASTM. (2001). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens 1 - ASTM C39/C39M - Standard. In Annual Book of ASTM Standards. https://normanray.files.wordpress.com/2010/10/kuliah-7b-beton-segar-astm-c39.pdf
ASTM. (2016). Standard Test Method for Flexural Strength of Concrete (using Simple Beam with Center-Point Loading)1 - C293/C293M - 16 - Standard. In Annual Book of ASTM Standards. https://doi.org/DOI: 10.1520/C0293_C0293M-16
Asyraf, M. R. M., Ishak, M. R., Syamsir, A., Amir, A. L., Nurazzi, N. M., Norrrahim, M. N. F., Asrofi, M., Rafidah, M., Ilyas, R. A., Rashid, M. Z. A., & Razman, M. R. (2022). Filament-wound glass-fibre reinforced polymer composites: Potential applications for cross arm structure in transmission towers. Polymer Bulletin, 80, 1059-1084. https://doi.org/10.1007/s00289-022-04114-4
Bedi, R., Chandra, R., Singh, S. P., Martínez-lópez, M., Martínez-barrera, G., Salgado-delgado, R., Gencel, O., Parker, E. E., Moffett, E. W., Ferdous, W., Manalo, A. C., Wong, H. S., Abousnina, R., AlAjarmeh, O. S., Zhuge, Y., Schubel, P., Afroughsabet, V., Ozbakkaloglu, T., Blazy, J., … & Hss, J. (2021). Optimal design for epoxy polymer concrete based on mechanical properties and durability aspects. Construction and Building Materials, 167, 185-196. https://doi.org/10.1016/j.conbuildmat.2019.117229
Blazy, J., & Blazy, R. (2021). Polypropylene fiber reinforced concrete and its application in creating architectural forms of public spaces. Case Studies in Construction Materials, 14, Article e00549. https://doi.org/10.1016/j.cscm.2021.e00549
Broda, J. (2016). Application of polypropylene fibrillated fibres for reinforcement of concrete and cement mortars. In High Performance Concrete Technology and Applications (pp. 189-204). IntechOpen Limited. https://doi.org/10.5772/64386
Ferdous, W., Manalo, A., Wong, H. S., Abousnina, R., AlAjarmeh, O. S., Zhuge, Y., & Schubel, P. (2020). Optimal design for epoxy polymer concrete based on mechanical properties and durability aspects. Construction and Building Materials, 232, Article 117229. https://doi.org/10.1016/j.conbuildmat.2019.117229
Fluminense, U. F. (2014). Mechanical characterization of fiber reinforced polymer concrete. Materials Research, 8(3), 357-360. https://doi.org/10.1590/S1516-14392005000300023
Gagandeep. (2021). Experimental study on strength characteristics of polymer concrete with epoxy resin. Materials Today: Proceedings, 37, 2886-2889. https://doi.org/10.1016/j.matpr.2020.08.665
Ghasemi, Y. (2019). Flowability and proportioning of cementitious mixtures (Master thesis). Lulea University of Technology, Sweden. https://doi.org/10.13140/RG.2.2.32843.23849
Gorninski, J. P., Molin, D. C. D., & Kazmierczak, C. S. (2007). Strength degradation of polymer concrete in acidic environments. Cement and Concrete Composites, 29(8), 637-645. https://doi.org/10.1016/j.cemconcomp.2007.04.001
Guo, L., Zhang, F., Zhong, L., Guo, L., & Wang, L. (2021). Texture analysis of the microstructure of concrete with different concentrations of superabsorbent polymer after internal curing. Materials Today Communications, 27, Article 102361. https://doi.org/10.1016/j.mtcomm.2021.102361
Hameed, A. M., & Hamza, M. T. (2019). Characteristics of polymer concrete produced from wasted construction materials. Energy Procedia, 157(2018), 43-50. https://doi.org/10.1016/j.egypro.2018.11.162
Harison, A., Srivastava, V., & Herbert, A. (2014). Effect of fly ash on compressive strength of Portland pozzolona cement concrete. Journal of Academia and Industrial Research, 2(8), 476-479.
Hsie, M., Tu, C., & Song, P. S. (2008). Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Materials Science and Engineering A, 494(1-2), 153-157. https://doi.org/10.1016/j.msea.2008.05.037
Jafari, K., Tabatabaeian, M., Joshaghani, A., & Ozbakkaloglu, T. (2018). Optimizing the mixture design of polymer concrete: An experimental investigation. Construction and Building Materials, 167, 185-196. https://doi.org/10.1016/j.conbuildmat.2018.01.191
Jo, B., Park, S., & Kim, D. (2008). Mechanical properties of nano-MMT reinforced polymer composite and polymer concrete. Construction and Building Materials, 22(1), 14-20. https://doi.org/10.1016/j.conbuildmat.2007.02.009
Kayali, O., Haque, M. N., & Zhu, B. (2003). Some characteristics of high strength fiber reinforced lightweight aggregate concrete. Cement and Concrete Composites, 25(2), 207-213. https://doi.org/10.1016/S0958-9465(02)00016-1
Liu, R., Li, T., & Greene, R. (2020). Migration and inequality in rental housing: Affordability stress in the Chinese cities. Applied Geography, 115, Article 102138. https://doi.org/10.1016/j.apgeog.2019.102138
Manjunatha, M., Preethi, S., Malingaraya, Mounika, H. G., Niveditha, K. N., & Ravi. (2021). Life cycle assessment (LCA) of concrete prepared with sustainable cement-based materials. Materials Today: Proceedings, 47(13), 3637-3644. https://doi.org/10.1016/j.matpr.2021.01.248
Martínez-López, M., Martínez-Barrera, G., Salgado-Delgado, R., & Gencel, O. (2021). Recycling polypropylene and polyethylene wastes in production of polyester based polymer mortars. Construction and Building Materials, 274, Article 121487. https://doi.org/10.1016/j.conbuildmat.2020.121487
McCarthy, M. J., Yakub, H. I., & Csetenyi, L. J. (2022). Impact of fly ash production and sourcing changes on chemical and physical aspects of concrete durability. Construction and Building Materials, 342, Article 127313. https://doi.org/10.1016/j.conbuildmat.2022.127313
Mocharla, I. R., Selvam, R., Govindaraj, V., & Muthu, M. (2022). Performance and life-cycle assessment of high-volume fly ash concrete mixes containing steel slag sand. Construction and Building Materials, 341, Article 127814. https://doi.org/10.1016/j.conbuildmat.2022.127814
Mohamad, D., Syamsir, A., Beddu, S., Kamal, N. L. M., Zainoodin, M. M., Razali, M. F., Abas, A., Seman, S. A. H. A., & Ng, F. C. (2019). Effect of laminate properties on the failure of cross arm structure under multi-axial load. IOP Conference Series: Materials Science and Engineering, 530(1), Article 012029. https://doi.org/10.1088/1757-899X/530/1/012029
Oey, T., Timmons, J., Stutzman, P., Bullard, J. W., Balonis, M., Bauchy, M., & Sant, G. (2017). An improved basis for characterizing the suitability of fly ash as a cement replacement agent. Journal of the American Ceramic Society, 100(10), 4785-4800. https://doi.org/10.1111/jace.14974
Ohama, Y., & Demura, K. (1982). Relation between curing conditions and compressive strength of polyester resin concrete. International Journal of Cement Composites and Lightweight Concrete, 4(4), 241-244. https://doi.org/10.1016/0262-5075(82)90028-8
Otoom, O. F., Lokuge, W., Karunasena, W., Manalo, A. C., Ozbakkaloglu, T., & Ehsani, M. R. (2022). Flexural behaviour of circular reinforced concrete columns strengthened by glass fibre reinforced polymer wrapping system. Structures, 38, 1326-1348. https://doi.org/10.1016/j.istruc.2022.02.071
Pan, Y., Zhang, Y., Zhang, D., & Yang, H. (2021). Effect of polymer and conventional molds on the aesthetical surface quality of concretes. Construction and Building Materials, 302, Article 124375. https://doi.org/10.1016/j.conbuildmat.2021.124375
Parker, E. E., & Moffett, E. W. (1954). Physical properties of polyester resin. Industrial & Engineering Chemistry, 46(8), 1615-1618. https://doi.org/10.1021/ie50536a031
Qin, Y., Zhang, X., Chai, J., Xu, Z., & Li, S. (2019). Experimental study of compressive behavior of polypropylene-fiber-reinforced and polypropylene-fiber-fabric-reinforced concrete. Construction and Building Materials, 194, 216-225. https://doi.org/10.1016/j.conbuildmat.2018.11.042
Ramezanianpour, A. A., Esmaeili, M., Ghahari, S. A., & Najafi, M. H. (2013). Laboratory study on the effect of polypropylene fiber on durability, and physical and mechanical characteristic of concrete for application in sleepers. Construction and Building Materials, 44, 411-418. https://doi.org/10.1016/j.conbuildmat.2013.02.076
Rebeiz, K. S. (1995). Time-temperature properties of polymer concrete using recycled PET. Cement and Concrete Composites, 17, 119–124. https://doi.org/10.1016/0958-9465(94)00004-I
Rebeiz, K. S. (1996). Precast use of polymer concrete using unsaturated polyester resin based on recycled PET waste. Construction and Building Materials, 10(3), 215-220. https://doi.org/10.1016/0950-0618(95)00088-7
Ribeiro, M. C. S., Nóvoa, P. R., Ferreira, A. J. M., & Marques, A. T. (2004). Flexural performance of polyester and epoxy polymer mortars under severe thermal conditions. Cement and Concrete Composites, 26(7), 803-809. https://doi.org/10.1016/S0958-9465(03)00162-8
Sanjith, J., Kiran, B. M., Chethan, G., & N, M. K. K. (2015). A study on mechanical properties of latex modified high strength concrete using bottom ash as a replacement for fine aggregate. International Journal, 3(6), 114-121.
Saribiyik, M., Piskin, A., & Saribiyik, A. (2013). The effects of waste glass powder usage on polymer concrete properties. Construction and Building Materials, 47, 840-844. https://doi.org/10.1016/j.conbuildmat.2013.05.023
Scope, C., Vogel, M., & Guenther, E. (2021). Greener, cheaper, or more sustainable: Reviewing sustainability assessments of maintenance strategies of concrete structures. Sustainable Production and Consumption, 26, 838-858. https://doi.org/10.1016/j.spc.2020.12.022
Song, P. S., Hwang, S., & Sheu, B. C. (2005). Strength properties of nylon- and polypropylene-fiber-reinforced concretes. Cement and Concrete Research, 35(8), 1546-1550. https://doi.org/10.1016/j.cemconres.2004.06.033
Supian, A. B. M., Sapuan, S. M., Jawaid, M., Zuhri, M. Y. M., Ilyas, R. A., & Syamsir, A. (2022). Crashworthiness response of filament wound kenaf/glass fibre-reinforced epoxy composite tubes with influence of stacking sequence under intermediate-velocity impact load. Fibers and Polymers, 23(1), 222-233. https://doi.org/10.1007/s12221-021-0169-9
Teixeira, E. R., Camões, A., & Branco, F. G. (2022). Synergetic effect of biomass fly ash on improvement of high-volume coal fly ash concrete properties. Construction and Building Materials, 314, Article 125680. https://doi.org/10.1016/j.conbuildmat.2021.125680
Varun, B. K., & Kumar, C. A. (2021). Flexural and shear characteristics of polymer modified high volume fly ash concrete. Materials Today: Proceedings, 46, 289-293. https://doi.org/10.1016/j.matpr.2020.08.040
Yin, S. (2015). Development of Recycled Polypropylene Plastic Fibres to Reinforce Concrete. Springer.