PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 47 (4) Nov. 2024 / JTAS(S)-0001-2024

 

Paederia foetida Ameliorates Diabetic Cardiomyopathy in Rats Models by Suppressing Apoptosis

Amrah Javaid, Norsuhana Omar, Rozaziana Ahmad, Anani Aila Mat Zin, Aminah Che Romli and Rilwanu Isah Tsamiya

Pertanika Journal of Tropical Agricultural Science, Volume 47, Issue 4, November 2024

DOI: https://doi.org/10.47836/pjtas.47.4.24

Keywords: Diabetic cardiomyopathy, hyperglycemia, myocardial apoptosis, Paederia foetida, type 2 diabetes mellitus

Published on: 29 November 2024

Diabetes mellitus is one of the most prevalent global public health issues associated with a higher risk of cardiovascular diseases, contributing to morbidity and mortality. Research has demonstrated that elevated reactive oxygen species (ROS) generation in diabetes can trigger apoptosis, exacerbating diabetic cardiomyopathy (DCM). This study investigates the cardioprotective effects of Paederia foetida in rats’ models of type 2 diabetes induced by a high-fat diet (HFD) and streptozotocin (STZ) treatment. The diabetic model was established in Sprague Dawley rats by intraperitoneal injection of streptozotocin (STZ, 40 mg/kg). Sprague Dawley rats were treated with varied concentrations of standardized extract of P. foetida (50 mg/kg and 100 mg/kg), administered orally once daily for four weeks. Standardized extract from P. foetida has a range of therapeutic potential, including anti-inflammatory, antioxidant, and anti-diabetic properties. The common metabolic disorder indices and myocardial apoptosis were investigated. The findings from this study demonstrated increased expression of Bcl-2 and decreased expression of Bcl-2 Associated X-protein BAX as indicated by IRS scoring in cardiomyocytes, suggesting that P. foetida has a significant protective effect on diabetic cardiomyopathy by decreasing apoptosis. Increased Bcl-2 and decreased BAX levels may be related to regulating oxidative stress and mitochondrial pathways involving myocardial apoptosis. P. foetida extract could be a potential intervention for attenuating cardiomyopathy in diabetes mellitus.

  • Aragno, M., Mastrocola, R., Medana, C., Catalano, M. G., Vercellinatto, I., Danni, O., & Boccuzzi, G. (2006). Oxidative stress-dependent impairment of cardiac-specific transcription factors in experimental diabetes. Endocrinology, 147(12), 5967–5974. https://doi.org/10.1210/EN.2006-0728

  • Aravani, D., Foote, K., Figg, N., Finigan, A., Uryga, A., Clarke, M., & Bennett, M. (2020). Cytokine regulation of apoptosis-induced apoptosis and apoptosis-induced cell proliferation in vascular smooth muscle cells. Apoptosis, 25(9), 648. https://doi.org/10.1007/S10495-020-01622-4

  • Aslan, A., Beyaz, S., Gok, O., Parlak, G., Can, M. I., Agca, C. A., Ozercan, I. H., & Parlak, A. E. (2023). Royal jelly protects brain tissue against fluoride-induced damage by activating Bcl-2/NF-κB/caspase-3/caspase-6/Bax and Erk signaling pathways in rats. Environmental Science and Pollution Research, 30(17), 49014-49025. https://doi.org/10.1007/s11356-023-25636-y

  • Bays, H., Mandarino, L., & DeFronzo, R. A. (2004). Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: Peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. The Journal of Clinical Endocrinology and Metabolism, 89(2), 463–478. https://doi.org/10.1210/jc.2003-030723

  • Bhatt, N. M., Aon, M. A., Tocchetti, C. G., Shen, X., Dey, S., Ramirez-Correa, G., O′Rourke, B., Gao, W. D., & Cortassa, S. (2015). Restoring redox balance enhances contractility in heart trabeculae from type 2 diabetic rats exposed to high glucose. American Journal of Physiology-Heart and Circulatory Physiology, 308(4), H291–H302. https://doi.org/10.1152/ajpheart.00378.2014

  • Cai, L., Li, W., Wang, G., Guo, L., Jiang, Y., & Kang, Y. J. (2002). Hyperglycemia-induced apoptosis in mouse myocardium. Diabetes, 51(6), 1938–1948. https://doi.org/10.2337/diabetes.51.6.1938

  • Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A. M., Fava, F., Tuohy, K. M., Chabo, C., Waget, A., Delmée, E., Cousin, B., Sulpice, T., Chamontin, B., Ferrières, J., Tanti, J. F., Gibson, G. R., Casteilla, L., … Burcelin, R. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761–1772. https://doi.org/10.2337/db06-1491

  • Cory, S., & Adams, J. M. (2002). The Bcl2 family: Regulators of the cellular life-or-death switch. Nature Reviews Cancer, 2(9), 647–656. https://doi.org/10.1038/nrc883

  • De, S., Ravishankar, B., & Bhavsar, G. C. (1994). Investigation of the anti-inflammatory effects of Paederia foetida. Journal of Ethnopharmacology, 43(1), 31–38. https://doi.org/10.1016/0378-8741(94)90113-9

  • Dillmann, W. H. (2019). Diabetic cardiomyopathy. Circulation Research, 124(8), 1160–1162. https://doi.org/10.1161/CIRCRESAHA.118.314665

  • Dunlay, S. M., Givertz, M. M., Aguilar, D., Allen, L. A., Chan, M., Desai, A. S., Deswal, A., Dickson, V. V., Kosiborod, M. N., Lekavich, C. L., McCoy, R. G., Mentz, R. J., & Piña, I. L. (2019). Type 2 diabetes mellitus and heart failure: A scientific statement from the american heart association and the heart failure society of america: This statement does not represent an update of the 2017 ACC/AHA/HFSA heart failure guideline update. Circulation, 140(7), e294-e324. https://doi.org/10.1161/CIR.0000000000000691

  • ElSayed, N. A., Aleppo, G., Aroda, V. R., Bannuru, R. R., Brown, F. M., Bruemmer, D., Collins, B. S., Hilliard, M. E., Isaacs, D., Johnson, E. L., Kahan, S., Khunti, K., Leon, J., Lyons, S. K., Perry, M. lou, Prahalad, P., Pratley, R. E., Seley, J. J., Stanton, R. C., & Gabbay, R. A. (2023). 2. Classification and diagnosis of diabetes: Standards of care in diabetes—2023. Diabetes Care, 46(Supplement_1), S19–S40. https://doi.org/10.2337/dc23-S002

  • Emamaullee, J. A., Shapiro, A. M. J., Rajotte, R. V., Korbutt, G., & Elliott, J. F. (2006). Neonatal porcine islets exhibit natural resistance to hypoxia-induced apoptosis. Transplantation, 82(7), 945–952. https://doi.org/10.1097/01.TP.0000238677.00750.32

  • Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., & Nagata, S. (1998). A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature, 391(6662), 43–50. https://doi.org/10.1038/34112

  • Evans, J. L., Goldfine, I. D., Maddux, B. A., & Grodsky, G. M. (2002). Oxidative stress and stress-activated signaling pathways: A unifying hypothesis of type 2 diabetes. Endocrine Reviews, 23(5), 599–622. https://doi.org/10.1210/ER.2001-0039

  • Fasshauer, M., & Blüher, M. (2015). Adipokines in health and disease. Trends in Pharmacological Sciences, 36(7), 461–470. https://doi.org/10.1016/j.tips.2015.04.014

  • Fedchenko, N., & Reifenrath, J. (2014). Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue - A review. Diagnostic Pathology, 9(1), 221. https://doi.org/10.1186/S13000-014-0221-9/TABLES/4

  • Fullstone, G., Bauer, T. L., Guttà, C., Salvucci, M., Prehn, J. H. M., & Rehm, M. (2020). The apoptosome molecular timer synergises with XIAP to suppress apoptosis execution and contributes to prognosticating survival in colorectal cancer. Cell Death and Differentiation, 27(10), 2828-2842. https://doi.org/10.1038/s41418-020-0545-9

  • Ge, Q., Zhao, L., Ren, X. M., Ye, P., & Hu, Z. Y. (2019). LCZ696, an angiotensin receptor-neprilysin inhibitor, ameliorates diabetic cardiomyopathy by inhibiting inflammation, oxidative stress and apoptosis. Experimental Biology and Medicine, 244(12), 1028-1039. https://doi.org/10.1177/1535370219861283

  • Heydemann, A. (2016). An overview of murine high fat diet as a model for type 2 diabetes mellitus. Journal of Diabetes Research, 2016(1), 2902351. https://doi.org/10.1155/2016/2902351

  • Ji, L., Liu, F., Jing, Z., Huang, Q., Zhao, Y., Cao, H., Li, J., Yin, C., Xing, J., & Li, F. (2017). MICU1 alleviates diabetic cardiomyopathy through mitochondrial Ca2+–dependent antioxidant response. Diabetes, 66(6), 1586–1600. https://doi.org/10.2337/db16-1237

  • Jia, G., Whaley-Connell, A., & Sowers, J. R. (2018). Diabetic cardiomyopathy: A hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia, 61(1), 21–28. https://doi.org/10.1007/s00125-017-4390-4

  • Koerdt, S., Tanner, N., Rommel, N., Rohleder, N. H., Stoeckelhuber, M., Wolff, K. D., & Kesting, M. R. (2017). An immunohistochemical study on the role of oxidative and nitrosative stress in irradiated skin. Cells Tissues Organs, 203(1), 12-19. https://doi.org/10.1159/000447584

  • Kukidome, D., Nishikawa, T., Sonoda, K., Imoto, K., Fujisawa, K., Yano, M., Motoshima, H., Taguchi, T., Matsumura, T., & Araki, E. (2006). Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes, 55(1), 120–127. https://doi.org/10.2337/diabetes.55.01.06.db05-0943

  • Kumar, V., Anwar, F., Ahmed, D., Verma, A., Ahmed, A., Damanhouri, Z. A., Mishra, V., Ramteke, P. W., Bhatt, P. C., & Mujeeb, M. (2014). Paederia foetida Linn. leaf extract: An antihyperlipidemic, antihyperglycaemic and antioxidant activity. BMC Complementary and Alternative Medicine, 14(1), 76. https://doi.org/10.1186/1472-6882-14-76

  • Lee, J. H., Mellado-Gil, J. M., Bahn, Y. J., Pathy, S. M., Zhang, Y. E., & Rane, S. G. (2020). Protection from β-cell apoptosis by inhibition of TGF-β/Smad3 signaling. Cell Death & Disease, 11(3), 184. https://doi.org/10.1038/s41419-020-2365-8

  • Lee, S. C., & Pervaiz, S. (2007). Apoptosis in the pathophysiology of diabetes mellitus. The International Journal of Biochemistry and Cell Biology, 39(3), 497–504. https://doi.org/10.1016/j.biocel.2006.09.007

  • Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S., & Wang, X. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade. Cell, 91(4), 479–489. https://doi.org/10.1016/S0092-8674(00)80434-1

  • Lu, Q., Zheng, R., Zhu, P., Bian, J., Liu, Z., & Du, J. (2021). Hinokinin alleviates high fat diet/streptozotocin-induced cardiac injury in mice through modulation in oxidative stress, inflammation and apoptosis. Biomedicine & Pharmacotherapy, 137, 111361. https://doi.org/10.1016/j.biopha.2021.111361

  • Lv, X., Yu, X., Wang, Y., Wang, F., Li, H., Wang, Y., Lu, D., Qi, R., & Wang, H. (2012). Berberine inhibits doxorubicin-triggered cardiomyocyte apoptosis via attenuating mitochondrial dysfunction and increasing Bcl-2 expression. PLOS One, 7(10), e47351. https://doi.org/10.1371/journal.pone.0047351

  • Marles, R. J., & Farnsworth, N. R. (1995). Antidiabetic plants and their active constituents. Phytomedicine, 2(2), 137–189. https://doi.org/10.1016/S0944-7113(11)80059-0

  • Mordi, N. A., Mordi, I. R., Singh, J. S., McCrimmon, R. J., Struthers, A. D., & Lang, C. C. (2020). Renal and cardiovascular effects of SGLT2 inhibition in combination with loop diuretics in patients with type 2 diabetes and chronic heart failure. Circulation, 142(18), 1713–1724. https://doi.org/10.1161/CIRCULATIONAHA.120.048739

  • Nishimura, Y., Iwashita, M., Hayashi, M., Shinjo, T., Watanabe, Y., Zeze, T., Yamashita, A., Fukuda, T., Sanui, T., Sano, T., Asano, T., & Nishimura, F. (2022). XAF1 overexpression exacerbates diabetes by promoting pancreatic β-cell apoptosis. Acta Diabetologica, 59(10), 1275–1286. https://doi.org/10.1007/s00592-022-01930-y

  • Orrenius, S. (2007). Reactive oxygen species in mitochondria-mediated cell death. Drug Metabolism Reviews, 39(2–3), 443–455. https://doi.org/10.1080/03602530701468516

  • Osman, H., Rahim, A., Isa, N., & Bakhir, N. (2009). Antioxidant activity and phenolic content of Paederia foetida and Syzygium aqueum. Molecules, 14(3), 970–978. https://doi.org/10.3390/molecules14030970

  • Ott, M., Gogvadze, V., Orrenius, S., & Zhivotovsky, B. (2007). Mitochondria, oxidative stress and cell death. Apoptosis, 12(5), 913–922. https://doi.org/10.1007/s10495-007-0756-2

  • Pang, J., Rhodes, D. H., Pini, M., Akasheh, R. T., Castellanos, K. J., Cabay, R. J., Cooper, D., Perretti, M., & Fantuzzi, G. (2013). Increased adiposity, dysregulated glucose metabolism and systemic inflammation in galectin-3 KO mice. PLOS One, 8(2), e57915. https://doi.org/10.1371/journal.pone.0057915

  • Patar, A. K., Sharma, A., Syiem, D., & Bhan, S. (2018). Chlorophyllin supplementation modulates hyperglycemia-induced oxidative stress and apoptosis in liver of streptozotocin-administered mice. BioFactors, 44(5), 418–430. https://doi.org/10.1002/biof.1438

  • Pavlou, D., & Kirmizis, A. (2016). Depletion of histone N-terminal-acetyltransferase Naa40 induces p53-independent apoptosis in colorectal cancer cells via the mitochondrial pathway. Apoptosis: An International Journal on Programmed Cell Death, 21(3), 298–311. https://doi.org/10.1007/S10495-015-1207-0

  • Punthakee, Z., Goldenberg, R., & Katz, P. (2018). Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Canadian Journal of Diabetes, 42(Suppl 1), S10–S15. https://doi.org/10.1016/J.JCJD.2017.10.003

  • Raish, M. (2017). Momordica charantia polysaccharides ameliorate oxidative stress, hyperlipidemia, inflammation, and apoptosis during myocardial infarction by inhibiting the NF-κB signaling pathway. International Journal of Biological Macromolecules, 97, 544–551. https://doi.org/10.1016/j.ijbiomac.2017.01.074

  • Saisho, Y. (2014). Glycemic variability and oxidative stress: A link between diabetes and cardiovascular disease? International Journal of Molecular Sciences, 15(10), 18381–18406. https://doi.org/10.3390/ijms151018381

  • Sangweni, N. F., Mosa, R. A., Dludla, P. v., Kappo, A. P., Opoku, A. R., Muller, C. J. F., & Johnson, R. (2021). The triterpene, methyl-3β-hydroxylanosta-9,24-dien-21-oate (RA3), attenuates high glucose-induced oxidative damage and apoptosis by improving energy metabolism. Phytomedicine, 85, 153546. https://doi.org/10.1016/j.phymed.2021.153546

  • Shokoohi, M., Soltani, M., Abtahi-Eivary, S. H., Niazi, V., Poor, M. R., Ravaei, H., Salimnejad, R., Moghimian, M., & Shoorei, H. (2019). Effect of hydro–alcoholic extract of Olea europaea on apoptosis–related genes and oxidative stress in a rat model of torsion/detorsion–induced ovarian damage. Asian Pacific Journal of Reproduction, 8(4), 148-156. https://doi.org/10.4103/2305-0500.262831

  • Slee, E. A., Harte, M. T., Kluck, R. M., Wolf, B. B., Casiano, C. A., Newmeyer, D. D., Wang, H. G., Reed, J. C., Nicholson, D. W., Alnemri, E. S., Green, D. R., & Martin, S. J. (1999). Ordering the cytochrome c–initiated caspase cascade: Hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9–dependent manner. Journal of Cell Biology, 144(2), 281–292. https://doi.org/10.1083/jcb.144.2.281

  • Snell-Bergeon, J. K., & Maahs, D. M. (2015). Elevated risk of mortality in type 1 diabetes mellitus. Nature Reviews Endocrinology, 11(3), 136–138. https://doi.org/10.1038/nrendo.2014.245

  • Sun, H. J., Xiong, S. P., Wu, Z. Y., Cao, L., Zhu, M. Y., Moore, P. K., & Bian, J. S. (2020). Induction of caveolin-3/eNOS complex by nitroxyl (HNO) ameliorates diabetic cardiomyopathy. Redox Biology, 32, 101493. https://doi.org/10.1016/j.redox.2020.101493

  • Tan, D. C., Quek, A., Kassim, N. K., Ismail, I. S., & Lee, J. J. (2020). Rapid quantification and validation of biomarker scopoletin in Paederia foetida by qNMR and UV–Vis for herbal preparation. Molecules, 25(21), 5162. https://doi.org/10.3390/molecules25215162

  • Tang, S. Y., & Halliwell, B. (2010). Medicinal plants and antioxidants: What do we learn from cell culture and Caenorhabditis elegans studies? Biochemical and Biophysical Research Communications, 394(1), 1–5. https://doi.org/10.1016/J.BBRC.2010.02.137.

  • Unamuno, X., Gómez-Ambrosi, J., Rodríguez, A., Becerril, S., Frühbeck, G., & Catalán, V. (2018). Adipokine dysregulation and adipose tissue inflammation in human obesity. European Journal of Clinical Investigation, 48(9), e12997. https://doi.org/10.1111/eci.12997

  • Upadhyaya, S. (2013). Screening of phytochemicals, nutritional status, antioxidant and antimicrobial activity of Paederia foetida Linn. from different localities of Assam, India. Journal of Pharmacy Research, 7(1), 139–141. https://doi.org/10.1016/j.jopr.2013.01.015

  • Wang, W., Lu, Q., Zhang, J., Wang, B., Liu, X., An, F., Qin, W., Chen, X., Dong, W., Zhang, C., Zhang, Y., & Zhang, M. (2014). HMGB1 mediates hyperglycaemia‐induced cardiomyocyte apoptosis via ERK/Ets‐1 signalling pathway. Journal of Cellular and Molecular Medicine, 18(11), 2311–2320. https://doi.org/10.1111/jcmm.12399

  • Wen, C., Liu, C., Li, Y., Xia, T., Zhang, X., Xue, S., & Olatunji, O. J. (2022). Ameliorative potentials of the ethanolic extract from Lycium chinense leaf extract against diabetic cardiomyopathy. Insight into oxido-inflammatory and apoptosis modulation. Biomedicine & Pharmacotherapy, 154, 113583. https://doi.org/10.1016/J.BIOPHA.2022.113583.

  • Yang, E., Zha, J., Jockel, J., Boise, L. H., Thompson, C. B., & Korsmeyer, S. J. (1995). Bad, a heterodimeric partner for Bcl-xL and Bcl-2, displaces bax and promotes cell death. Cell, 80(2), 285–291. https://doi.org/10.1016/0092-8674(95)90411-5

  • Zhang, F., Lin, X., Yu, L., Li, W., Qian, D., Cheng, P., He, L., Yang, H., & Zhang, C. (2016). Low‐dose radiation prevents type 1 diabetes‐induced cardiomyopathy via activation of AKT mediated anti‐apoptotic and anti‐oxidant effects. Journal of Cellular and Molecular Medicine, 20(7), 1352–1366. https://doi.org/10.1111/jcmm.12823

  • Zhao, K., Yang, S. S., Wang, H. Bin, Chen, K., Lu, Z. H., & Mu, Y. M. (2018). Association between the hypertriglyceridemic waist phenotype and prediabetes in Chinese adults aged 40 years and older. Journal of Diabetes Research, 2018(1), Article 1031939. https://doi.org/10.1155/2018/1031939

  • Zhou, H., Sun, Y., Zhang, L., Kang, W., Li, N., & Li, Y. (2018). The RhoA/ROCK pathway mediates high glucose-induced cardiomyocyte apoptosis via oxidative stress, JNK, and p38MAPK pathways. Diabetes/Metabolism Research and Reviews, 34(6), e3022. https://doi.org/10.1002/dmrr.3022

  • Zou, J., Sui, D., Fu, W., Li, Y., Yu, P., Yu, X., & Xu, H. (2021). Total flavonoids extracted from the leaves of Murraya paniculata (L.) Jack alleviate oxidative stress, inflammation and apoptosis in a rat model of diabetic cardiomyopathy. Journal of Functional Foods, 76, 104319. https://doi.org/10.1016/J.JFF.2020.104319