e-ISSN 2231-8542
ISSN 1511-3701
Amrah Javaid, Norsuhana Omar, Rozaziana Ahmad, Anani Aila Mat Zin, Aminah Che Romli and Rilwanu Isah Tsamiya
Pertanika Journal of Tropical Agricultural Science, Volume 47, Issue 4, November 2024
DOI: https://doi.org/10.47836/pjtas.47.4.24
Keywords: Diabetic cardiomyopathy, hyperglycemia, myocardial apoptosis, Paederia foetida, type 2 diabetes mellitus
Published on: 29 November 2024
Diabetes mellitus is one of the most prevalent global public health issues associated with a higher risk of cardiovascular diseases, contributing to morbidity and mortality. Research has demonstrated that elevated reactive oxygen species (ROS) generation in diabetes can trigger apoptosis, exacerbating diabetic cardiomyopathy (DCM). This study investigates the cardioprotective effects of Paederia foetida in rats’ models of type 2 diabetes induced by a high-fat diet (HFD) and streptozotocin (STZ) treatment. The diabetic model was established in Sprague Dawley rats by intraperitoneal injection of streptozotocin (STZ, 40 mg/kg). Sprague Dawley rats were treated with varied concentrations of standardized extract of P. foetida (50 mg/kg and 100 mg/kg), administered orally once daily for four weeks. Standardized extract from P. foetida has a range of therapeutic potential, including anti-inflammatory, antioxidant, and anti-diabetic properties. The common metabolic disorder indices and myocardial apoptosis were investigated. The findings from this study demonstrated increased expression of Bcl-2 and decreased expression of Bcl-2 Associated X-protein BAX as indicated by IRS scoring in cardiomyocytes, suggesting that P. foetida has a significant protective effect on diabetic cardiomyopathy by decreasing apoptosis. Increased Bcl-2 and decreased BAX levels may be related to regulating oxidative stress and mitochondrial pathways involving myocardial apoptosis. P. foetida extract could be a potential intervention for attenuating cardiomyopathy in diabetes mellitus.
Aragno, M., Mastrocola, R., Medana, C., Catalano, M. G., Vercellinatto, I., Danni, O., & Boccuzzi, G. (2006). Oxidative stress-dependent impairment of cardiac-specific transcription factors in experimental diabetes. Endocrinology, 147(12), 5967–5974. https://doi.org/10.1210/EN.2006-0728
Aravani, D., Foote, K., Figg, N., Finigan, A., Uryga, A., Clarke, M., & Bennett, M. (2020). Cytokine regulation of apoptosis-induced apoptosis and apoptosis-induced cell proliferation in vascular smooth muscle cells. Apoptosis, 25(9), 648. https://doi.org/10.1007/S10495-020-01622-4
Aslan, A., Beyaz, S., Gok, O., Parlak, G., Can, M. I., Agca, C. A., Ozercan, I. H., & Parlak, A. E. (2023). Royal jelly protects brain tissue against fluoride-induced damage by activating Bcl-2/NF-κB/caspase-3/caspase-6/Bax and Erk signaling pathways in rats. Environmental Science and Pollution Research, 30(17), 49014-49025. https://doi.org/10.1007/s11356-023-25636-y
Bays, H., Mandarino, L., & DeFronzo, R. A. (2004). Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: Peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. The Journal of Clinical Endocrinology and Metabolism, 89(2), 463–478. https://doi.org/10.1210/jc.2003-030723
Bhatt, N. M., Aon, M. A., Tocchetti, C. G., Shen, X., Dey, S., Ramirez-Correa, G., O′Rourke, B., Gao, W. D., & Cortassa, S. (2015). Restoring redox balance enhances contractility in heart trabeculae from type 2 diabetic rats exposed to high glucose. American Journal of Physiology-Heart and Circulatory Physiology, 308(4), H291–H302. https://doi.org/10.1152/ajpheart.00378.2014
Cai, L., Li, W., Wang, G., Guo, L., Jiang, Y., & Kang, Y. J. (2002). Hyperglycemia-induced apoptosis in mouse myocardium. Diabetes, 51(6), 1938–1948. https://doi.org/10.2337/diabetes.51.6.1938
Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A. M., Fava, F., Tuohy, K. M., Chabo, C., Waget, A., Delmée, E., Cousin, B., Sulpice, T., Chamontin, B., Ferrières, J., Tanti, J. F., Gibson, G. R., Casteilla, L., … Burcelin, R. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761–1772. https://doi.org/10.2337/db06-1491
Cory, S., & Adams, J. M. (2002). The Bcl2 family: Regulators of the cellular life-or-death switch. Nature Reviews Cancer, 2(9), 647–656. https://doi.org/10.1038/nrc883
De, S., Ravishankar, B., & Bhavsar, G. C. (1994). Investigation of the anti-inflammatory effects of Paederia foetida. Journal of Ethnopharmacology, 43(1), 31–38. https://doi.org/10.1016/0378-8741(94)90113-9
Dillmann, W. H. (2019). Diabetic cardiomyopathy. Circulation Research, 124(8), 1160–1162. https://doi.org/10.1161/CIRCRESAHA.118.314665
Dunlay, S. M., Givertz, M. M., Aguilar, D., Allen, L. A., Chan, M., Desai, A. S., Deswal, A., Dickson, V. V., Kosiborod, M. N., Lekavich, C. L., McCoy, R. G., Mentz, R. J., & Piña, I. L. (2019). Type 2 diabetes mellitus and heart failure: A scientific statement from the american heart association and the heart failure society of america: This statement does not represent an update of the 2017 ACC/AHA/HFSA heart failure guideline update. Circulation, 140(7), e294-e324. https://doi.org/10.1161/CIR.0000000000000691
ElSayed, N. A., Aleppo, G., Aroda, V. R., Bannuru, R. R., Brown, F. M., Bruemmer, D., Collins, B. S., Hilliard, M. E., Isaacs, D., Johnson, E. L., Kahan, S., Khunti, K., Leon, J., Lyons, S. K., Perry, M. lou, Prahalad, P., Pratley, R. E., Seley, J. J., Stanton, R. C., & Gabbay, R. A. (2023). 2. Classification and diagnosis of diabetes: Standards of care in diabetes—2023. Diabetes Care, 46(Supplement_1), S19–S40. https://doi.org/10.2337/dc23-S002
Emamaullee, J. A., Shapiro, A. M. J., Rajotte, R. V., Korbutt, G., & Elliott, J. F. (2006). Neonatal porcine islets exhibit natural resistance to hypoxia-induced apoptosis. Transplantation, 82(7), 945–952. https://doi.org/10.1097/01.TP.0000238677.00750.32
Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., & Nagata, S. (1998). A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature, 391(6662), 43–50. https://doi.org/10.1038/34112
Evans, J. L., Goldfine, I. D., Maddux, B. A., & Grodsky, G. M. (2002). Oxidative stress and stress-activated signaling pathways: A unifying hypothesis of type 2 diabetes. Endocrine Reviews, 23(5), 599–622. https://doi.org/10.1210/ER.2001-0039
Fasshauer, M., & Blüher, M. (2015). Adipokines in health and disease. Trends in Pharmacological Sciences, 36(7), 461–470. https://doi.org/10.1016/j.tips.2015.04.014
Fedchenko, N., & Reifenrath, J. (2014). Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue - A review. Diagnostic Pathology, 9(1), 221. https://doi.org/10.1186/S13000-014-0221-9/TABLES/4
Fullstone, G., Bauer, T. L., Guttà, C., Salvucci, M., Prehn, J. H. M., & Rehm, M. (2020). The apoptosome molecular timer synergises with XIAP to suppress apoptosis execution and contributes to prognosticating survival in colorectal cancer. Cell Death and Differentiation, 27(10), 2828-2842. https://doi.org/10.1038/s41418-020-0545-9
Ge, Q., Zhao, L., Ren, X. M., Ye, P., & Hu, Z. Y. (2019). LCZ696, an angiotensin receptor-neprilysin inhibitor, ameliorates diabetic cardiomyopathy by inhibiting inflammation, oxidative stress and apoptosis. Experimental Biology and Medicine, 244(12), 1028-1039. https://doi.org/10.1177/1535370219861283
Heydemann, A. (2016). An overview of murine high fat diet as a model for type 2 diabetes mellitus. Journal of Diabetes Research, 2016(1), 2902351. https://doi.org/10.1155/2016/2902351
Ji, L., Liu, F., Jing, Z., Huang, Q., Zhao, Y., Cao, H., Li, J., Yin, C., Xing, J., & Li, F. (2017). MICU1 alleviates diabetic cardiomyopathy through mitochondrial Ca2+–dependent antioxidant response. Diabetes, 66(6), 1586–1600. https://doi.org/10.2337/db16-1237
Jia, G., Whaley-Connell, A., & Sowers, J. R. (2018). Diabetic cardiomyopathy: A hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia, 61(1), 21–28. https://doi.org/10.1007/s00125-017-4390-4
Koerdt, S., Tanner, N., Rommel, N., Rohleder, N. H., Stoeckelhuber, M., Wolff, K. D., & Kesting, M. R. (2017). An immunohistochemical study on the role of oxidative and nitrosative stress in irradiated skin. Cells Tissues Organs, 203(1), 12-19. https://doi.org/10.1159/000447584
Kukidome, D., Nishikawa, T., Sonoda, K., Imoto, K., Fujisawa, K., Yano, M., Motoshima, H., Taguchi, T., Matsumura, T., & Araki, E. (2006). Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes, 55(1), 120–127. https://doi.org/10.2337/diabetes.55.01.06.db05-0943
Kumar, V., Anwar, F., Ahmed, D., Verma, A., Ahmed, A., Damanhouri, Z. A., Mishra, V., Ramteke, P. W., Bhatt, P. C., & Mujeeb, M. (2014). Paederia foetida Linn. leaf extract: An antihyperlipidemic, antihyperglycaemic and antioxidant activity. BMC Complementary and Alternative Medicine, 14(1), 76. https://doi.org/10.1186/1472-6882-14-76
Lee, J. H., Mellado-Gil, J. M., Bahn, Y. J., Pathy, S. M., Zhang, Y. E., & Rane, S. G. (2020). Protection from β-cell apoptosis by inhibition of TGF-β/Smad3 signaling. Cell Death & Disease, 11(3), 184. https://doi.org/10.1038/s41419-020-2365-8
Lee, S. C., & Pervaiz, S. (2007). Apoptosis in the pathophysiology of diabetes mellitus. The International Journal of Biochemistry and Cell Biology, 39(3), 497–504. https://doi.org/10.1016/j.biocel.2006.09.007
Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S., & Wang, X. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade. Cell, 91(4), 479–489. https://doi.org/10.1016/S0092-8674(00)80434-1
Lu, Q., Zheng, R., Zhu, P., Bian, J., Liu, Z., & Du, J. (2021). Hinokinin alleviates high fat diet/streptozotocin-induced cardiac injury in mice through modulation in oxidative stress, inflammation and apoptosis. Biomedicine & Pharmacotherapy, 137, 111361. https://doi.org/10.1016/j.biopha.2021.111361
Lv, X., Yu, X., Wang, Y., Wang, F., Li, H., Wang, Y., Lu, D., Qi, R., & Wang, H. (2012). Berberine inhibits doxorubicin-triggered cardiomyocyte apoptosis via attenuating mitochondrial dysfunction and increasing Bcl-2 expression. PLOS One, 7(10), e47351. https://doi.org/10.1371/journal.pone.0047351
Marles, R. J., & Farnsworth, N. R. (1995). Antidiabetic plants and their active constituents. Phytomedicine, 2(2), 137–189. https://doi.org/10.1016/S0944-7113(11)80059-0
Mordi, N. A., Mordi, I. R., Singh, J. S., McCrimmon, R. J., Struthers, A. D., & Lang, C. C. (2020). Renal and cardiovascular effects of SGLT2 inhibition in combination with loop diuretics in patients with type 2 diabetes and chronic heart failure. Circulation, 142(18), 1713–1724. https://doi.org/10.1161/CIRCULATIONAHA.120.048739
Nishimura, Y., Iwashita, M., Hayashi, M., Shinjo, T., Watanabe, Y., Zeze, T., Yamashita, A., Fukuda, T., Sanui, T., Sano, T., Asano, T., & Nishimura, F. (2022). XAF1 overexpression exacerbates diabetes by promoting pancreatic β-cell apoptosis. Acta Diabetologica, 59(10), 1275–1286. https://doi.org/10.1007/s00592-022-01930-y
Orrenius, S. (2007). Reactive oxygen species in mitochondria-mediated cell death. Drug Metabolism Reviews, 39(2–3), 443–455. https://doi.org/10.1080/03602530701468516
Osman, H., Rahim, A., Isa, N., & Bakhir, N. (2009). Antioxidant activity and phenolic content of Paederia foetida and Syzygium aqueum. Molecules, 14(3), 970–978. https://doi.org/10.3390/molecules14030970
Ott, M., Gogvadze, V., Orrenius, S., & Zhivotovsky, B. (2007). Mitochondria, oxidative stress and cell death. Apoptosis, 12(5), 913–922. https://doi.org/10.1007/s10495-007-0756-2
Pang, J., Rhodes, D. H., Pini, M., Akasheh, R. T., Castellanos, K. J., Cabay, R. J., Cooper, D., Perretti, M., & Fantuzzi, G. (2013). Increased adiposity, dysregulated glucose metabolism and systemic inflammation in galectin-3 KO mice. PLOS One, 8(2), e57915. https://doi.org/10.1371/journal.pone.0057915
Patar, A. K., Sharma, A., Syiem, D., & Bhan, S. (2018). Chlorophyllin supplementation modulates hyperglycemia-induced oxidative stress and apoptosis in liver of streptozotocin-administered mice. BioFactors, 44(5), 418–430. https://doi.org/10.1002/biof.1438
Pavlou, D., & Kirmizis, A. (2016). Depletion of histone N-terminal-acetyltransferase Naa40 induces p53-independent apoptosis in colorectal cancer cells via the mitochondrial pathway. Apoptosis: An International Journal on Programmed Cell Death, 21(3), 298–311. https://doi.org/10.1007/S10495-015-1207-0
Punthakee, Z., Goldenberg, R., & Katz, P. (2018). Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Canadian Journal of Diabetes, 42(Suppl 1), S10–S15. https://doi.org/10.1016/J.JCJD.2017.10.003
Raish, M. (2017). Momordica charantia polysaccharides ameliorate oxidative stress, hyperlipidemia, inflammation, and apoptosis during myocardial infarction by inhibiting the NF-κB signaling pathway. International Journal of Biological Macromolecules, 97, 544–551. https://doi.org/10.1016/j.ijbiomac.2017.01.074
Saisho, Y. (2014). Glycemic variability and oxidative stress: A link between diabetes and cardiovascular disease? International Journal of Molecular Sciences, 15(10), 18381–18406. https://doi.org/10.3390/ijms151018381
Sangweni, N. F., Mosa, R. A., Dludla, P. v., Kappo, A. P., Opoku, A. R., Muller, C. J. F., & Johnson, R. (2021). The triterpene, methyl-3β-hydroxylanosta-9,24-dien-21-oate (RA3), attenuates high glucose-induced oxidative damage and apoptosis by improving energy metabolism. Phytomedicine, 85, 153546. https://doi.org/10.1016/j.phymed.2021.153546
Shokoohi, M., Soltani, M., Abtahi-Eivary, S. H., Niazi, V., Poor, M. R., Ravaei, H., Salimnejad, R., Moghimian, M., & Shoorei, H. (2019). Effect of hydro–alcoholic extract of Olea europaea on apoptosis–related genes and oxidative stress in a rat model of torsion/detorsion–induced ovarian damage. Asian Pacific Journal of Reproduction, 8(4), 148-156. https://doi.org/10.4103/2305-0500.262831
Slee, E. A., Harte, M. T., Kluck, R. M., Wolf, B. B., Casiano, C. A., Newmeyer, D. D., Wang, H. G., Reed, J. C., Nicholson, D. W., Alnemri, E. S., Green, D. R., & Martin, S. J. (1999). Ordering the cytochrome c–initiated caspase cascade: Hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9–dependent manner. Journal of Cell Biology, 144(2), 281–292. https://doi.org/10.1083/jcb.144.2.281
Snell-Bergeon, J. K., & Maahs, D. M. (2015). Elevated risk of mortality in type 1 diabetes mellitus. Nature Reviews Endocrinology, 11(3), 136–138. https://doi.org/10.1038/nrendo.2014.245
Sun, H. J., Xiong, S. P., Wu, Z. Y., Cao, L., Zhu, M. Y., Moore, P. K., & Bian, J. S. (2020). Induction of caveolin-3/eNOS complex by nitroxyl (HNO) ameliorates diabetic cardiomyopathy. Redox Biology, 32, 101493. https://doi.org/10.1016/j.redox.2020.101493
Tan, D. C., Quek, A., Kassim, N. K., Ismail, I. S., & Lee, J. J. (2020). Rapid quantification and validation of biomarker scopoletin in Paederia foetida by qNMR and UV–Vis for herbal preparation. Molecules, 25(21), 5162. https://doi.org/10.3390/molecules25215162
Tang, S. Y., & Halliwell, B. (2010). Medicinal plants and antioxidants: What do we learn from cell culture and Caenorhabditis elegans studies? Biochemical and Biophysical Research Communications, 394(1), 1–5. https://doi.org/10.1016/J.BBRC.2010.02.137.
Unamuno, X., Gómez-Ambrosi, J., Rodríguez, A., Becerril, S., Frühbeck, G., & Catalán, V. (2018). Adipokine dysregulation and adipose tissue inflammation in human obesity. European Journal of Clinical Investigation, 48(9), e12997. https://doi.org/10.1111/eci.12997
Upadhyaya, S. (2013). Screening of phytochemicals, nutritional status, antioxidant and antimicrobial activity of Paederia foetida Linn. from different localities of Assam, India. Journal of Pharmacy Research, 7(1), 139–141. https://doi.org/10.1016/j.jopr.2013.01.015
Wang, W., Lu, Q., Zhang, J., Wang, B., Liu, X., An, F., Qin, W., Chen, X., Dong, W., Zhang, C., Zhang, Y., & Zhang, M. (2014). HMGB1 mediates hyperglycaemia‐induced cardiomyocyte apoptosis via ERK/Ets‐1 signalling pathway. Journal of Cellular and Molecular Medicine, 18(11), 2311–2320. https://doi.org/10.1111/jcmm.12399
Wen, C., Liu, C., Li, Y., Xia, T., Zhang, X., Xue, S., & Olatunji, O. J. (2022). Ameliorative potentials of the ethanolic extract from Lycium chinense leaf extract against diabetic cardiomyopathy. Insight into oxido-inflammatory and apoptosis modulation. Biomedicine & Pharmacotherapy, 154, 113583. https://doi.org/10.1016/J.BIOPHA.2022.113583.
Yang, E., Zha, J., Jockel, J., Boise, L. H., Thompson, C. B., & Korsmeyer, S. J. (1995). Bad, a heterodimeric partner for Bcl-xL and Bcl-2, displaces bax and promotes cell death. Cell, 80(2), 285–291. https://doi.org/10.1016/0092-8674(95)90411-5
Zhang, F., Lin, X., Yu, L., Li, W., Qian, D., Cheng, P., He, L., Yang, H., & Zhang, C. (2016). Low‐dose radiation prevents type 1 diabetes‐induced cardiomyopathy via activation of AKT mediated anti‐apoptotic and anti‐oxidant effects. Journal of Cellular and Molecular Medicine, 20(7), 1352–1366. https://doi.org/10.1111/jcmm.12823
Zhao, K., Yang, S. S., Wang, H. Bin, Chen, K., Lu, Z. H., & Mu, Y. M. (2018). Association between the hypertriglyceridemic waist phenotype and prediabetes in Chinese adults aged 40 years and older. Journal of Diabetes Research, 2018(1), Article 1031939. https://doi.org/10.1155/2018/1031939
Zhou, H., Sun, Y., Zhang, L., Kang, W., Li, N., & Li, Y. (2018). The RhoA/ROCK pathway mediates high glucose-induced cardiomyocyte apoptosis via oxidative stress, JNK, and p38MAPK pathways. Diabetes/Metabolism Research and Reviews, 34(6), e3022. https://doi.org/10.1002/dmrr.3022
Zou, J., Sui, D., Fu, W., Li, Y., Yu, P., Yu, X., & Xu, H. (2021). Total flavonoids extracted from the leaves of Murraya paniculata (L.) Jack alleviate oxidative stress, inflammation and apoptosis in a rat model of diabetic cardiomyopathy. Journal of Functional Foods, 76, 104319. https://doi.org/10.1016/J.JFF.2020.104319
ISSN 1511-3701
e-ISSN 2231-8542