PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Abrahao, B., & Zhang, A. (2004) Characterizing application workloads on CPU utilization for utility computing (HPL-2004-157). Hewlett-Packard Company. https://www.hpl.hp.com/techreports/2004/HPL-2004-157.html

  • Ali-Eldin, A., Rezaie, A., Mehta, A., Razroev, S., Luna, S. S. de, Seleznjev, O., Tordsson, J., & Elmroth, E. (2014, March 11-14). How will your workload look like in 6 years? Analyzing Wikimedia’s workload. [Paper presentation]. 2014 IEEE International Conference on Cloud Engineering, Boston, USA. https://doi.org/10.1109/IC2E.2014.50

  • Bennani, M. N., & Menascé, D. A. (2005, June 13-16). Resource allocation for autonomic data centers using analytic performance models. [Paper presentation]. Second International Conference on Autonomic Computing, ICAC’05. Seattle, USA. https://doi.org/10.1109/ICAC.2005.50

  • Bienia, C., Kumar, S., Singh, J. P., & Li, K. (2008, October 25-29). The PARSEC benchmark suite: Characterization and architectural implications. [Paper presentation]. Proceedings of the 17th International Conference on Parallel Architectures and Compilation Techniques. Toronto, Canada. https://doi.org/10.1145/1454115.1454128

  • Birke, R., Chen, L. Y., & Smirni, E. (2014, May 5-9). Multi-resource characterization and their (in) dependencies in production datacenters. [Paper presentation]. IEEE/IFIP Network Operations and Management Symposium (NOMS), Krakow, Poland. https://doi.org/10.1109/NOMS.2014.6838300

  • Bodnarchuk, R., & Bunt, R. (1991, May 21-24). A synthetic workload model for a distributed system file server. [Paper presentation]. Proceedings of the 1991 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, California, USA. https://doi.org/10.1145/107971.107978

  • Calzarossa, M. C., Massari, L., & Tessera, D. (2016). Workload characterization. ACM Computing Surveys (CSUR), 48(3), 1-43. https://doi.org/10.1145/2856127

  • Cheng, Y., Chai, Z., & Anwar, A. (2018, August 27-28). Characterizing co-located datacenter workloads: An Alibaba case study. [Paper presentation]. Proceedings of the 9th Asia-Pacific Workshop on Systems, Jeju, Korea. https://doi.org/10.1145/3265723.3265742

  • Delimitrou, C., & Kozyrakis, C. (2011, June 20-24). Cross-examination of datacenter workload modeling techniques. [Paper presentation]. International Conference on Distributed Computing Systems Workshops, Minneapolis, USA. https://doi.org/10.1109/ICDCSW.2011.45

  • Huang, S., & Feng, W. (2009, May 18-21). Energy-efficient cluster computing via accurate workload characterization. [Paper presentation]. 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, Shanghai, China. https://doi.org/10.1109/CCGRID.2009.88

  • Ismaeel, S., Al-Khazraji, A., & Miri, A. (2019, April 15-17). An efficient workload clustering framework for large-scale data centers. [Paper presentation]. 8th International Conference on Modeling Simulation and Applied Optimization, Manama, Bahrain. https://doi.org/10.1109/ICMSAO.2019.8880305

  • Ismaeel, S., & Miri, A. (2019, January 7-9). Real-time energy-conserving VM-provisioning framework for cloud-data centers. [Paper presentation]. IEEE 9th Annual Computing and Communication Workshop and Conference, Las Vegas, USA. https://doi.org/10.1109/CCWC.2019.8666614

  • Jackson, K. R., Ramakrishnan, L., Muriki, K., Canon, S., Cholia, S., Shalf, J., Wasserman, H. J., & Wright, N. J. (2010, November 30 – December 3). Performance analysis of high performance computing applications on the Amazon Web Services cloud. [Paper presentation]. IEEE Second International Conference on Cloud Computing Technology and Science, Indianapolis, USA. https://doi.org/10.1109/CLOUDCOM.2010.69

  • Mishra, A. K., Hellerstein, J. L., Cirne, W., & Das, C. R. (2010). Towards characterizing cloud backend workloads. ACM SIGMETRICS Performance Evaluation Review, 37(4), 34-41. https://doi.org/10.1145/1773394.1773400

  • Moro, A., Mumolo, E., & Nolich, M. (2009, September 16-18). Ergodic continuous hidden markov models for workload characterization. [Paper presentation]. Proceedings of the 6th International Symposium on Image and Signal Processing and Analysis, Salzburg, Austria. https://doi.org/10.1109/ISPA.2009.5297771

  • Onan, A. (2019). Consensus Clustering-based undersampling approach to imbalanced learning. Scientific Programming, 2019, 1-14. https://doi.org/10.1155/2019/5901087

  • Onan, A., & KorukoGlu, S. (2017). A feature selection model based on genetic rank aggregation for text sentiment classification. Journal of Information Science, 43(1), 25-38. https://doi.org/10.1177/0165551515613226

  • Panneerselvam, J., Liu, L., Antonopoulos, N., & Bo, Y. (2014, December 8-11). Workload analysis for the scope of user demand prediction model evaluations in cloud environments. [Paper presentation]. IEEE/ACM 7th International Conference on Utility and Cloud Computing, London, United Kingdom. https://doi.org/10.1109/UCC.2014.144

  • Patel, J., Jindal, V., Yen, I. L., Bastani, F., Xu, J., & Garraghan, P. (2015, March 25-27). Workload estimation for improving resource management decisions in the cloud. [Paper presentation]. IEEE 12th International Symposium on Autonomous Decentralized Systems, Taichung, Taiwan. https://doi.org/10.1109/ISADS.2015.17

  • Rasheduzzaman, M., Islam, M. A., Islam, T., Hossain, T., & Rahman, R. M. (2014, February 21-22). Task shape classification and workload characterization of google cluster trace. [Paper presentation]. IEEE International Advance Computing Conference, Gurgaon, India. https://doi.org/10.1109/IADCC.2014.6779441

  • Reiss, C., Tumanov, A., Tumanov, A., Ganger G. R., & Katz, R. (2012). Towards understanding heterogeneous clouds at scale: Google trace analysis. ResearchGate. https://www.researchgate.net/publication/265531801_Towards_Understanding_Heterogeneous_Clouds_at_Scale_Google_Trace_Analysis

  • Shekhawat, V. S., Gautam, A., & Thakrar, A. (2018, December 1-2). Datacenter workload classification and characterization: An empirical approach. [Paper presentation]. IEEE 13th International Conference on Industrial and Information Systems, Rupnagar, India. https://doi.org/10.1109/ICIINFS.2018.8721402

  • Shen, S., van Beek, V., & Iosup, A. (2015, May 4-7). Statistical characterization of business-critical workloads hosted in cloud datacenters. [Paper presentation]. IEEE/ACM 15th International Symposium on Cluster, Cloud, and Grid Computing, Shenzhen, China. https://doi.org/10.1109/CCGRID.2015.60

  • Wang, K., Lin, M., Ciucu, F., Wierman, A., & Lin, C. (2015). Characterizing the impact of the workload on the value of dynamic resizing in data centers. Performance Evaluation, 85-86, 1-18. https://doi.org/10.1016/J.PEVA.2014.12.001

  • Yin, J., Lu, X., Zhao, X., Chen, H., & Liu, X. (2015). BURSE: A bursty and self-similar workload generator for cloud computing. IEEE Transactions on Parallel and Distributed Systems, 26(3), 668-680. https://doi.org/10.1109/TPDS.2014.2315204

  • Zhang, H., Jiang, G., Yoshihira, K., & Chen, H. (2014). Proactive workload management in hybrid cloud computing. IEEE Transactions on Network and Service Management, 11(1), 90-100. https://doi.org/10.1109/TNSM.2013.122313.130448

  • Zhang, Q., Hellerstein, J., & Boutaba, R. (2011) Characterizing task usage shapes in Google compute clusters. Google Research. https://research.google/pubs/pub37201/

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles