PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Abenina, M. I. A., Maja, J. M., Cutulle, M., Melgar, J. C., & Liu, H. (2022). Prediction of potassium in peach leaves using hyperspectral imaging and multivariate analysis. AgriEngineering, 4(2), 400-413. https://doi.org/10.3390/agriengineering4020027

  • Andaryani, S., Trolle, D., & Asl, A. M. (2019). Application of hyperion data for investigating agriculture field stress to drought conditions. EasyChair.

  • Asaari, M. S. M., Mishra, P., Mertens, S., Dhondt, S., Inzé, D., Wuyts, N., & Scheunders, P. (2018). Close-range hyperspectral image analysis for the early detection of stress responses in individual plants in a high-throughput phenotyping platform. ISPRS Journal of Photogrammetry and Remote Sensing, 138, 121-138. https://doi.org/10.1016/j.isprsjprs.2018.02.003

  • Asaari, M. S. M., Mertens, S., Dhondt, S., Inzé, D., Wuyts, N., & Scheunders, P. (2019). Analysis of hyperspectral images for detection of drought stress and recovery in maize plants in a high-throughput phenotyping platform. Computers and Electronics in Agriculture, 162, 749-758. https://doi.org/10.1016/j.compag.2019.05.018

  • Balachandran, S., Hurry, V. M., Kelley, S. E., Osmond, C. B., Robinson, S. A., Rohozinski, J., Seaton, G. G. R., & Sims, D. A. (1997). Concepts of plant biotic stress. Some insights into the stress physiology of virus-infected plants, from the perspective of photosynthesis. Physiologia Plantarum, 100(2), 203-213. https://doi.org/10.1111/j.1399-3054.1997.tb04776.x

  • Behmann, J., Steinrücken, J., & Plümer, L. (2014). Detection of early plant stress responses in hyperspectral images. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 98-111. https://doi.org/10.1016/j.isprsjprs.2014.03.016

  • Calzone, A., Cotrozzi, L., Lorenzini, G., Nali, C., & Pellegrini, E. (2021). Hyperspectral detection and monitoring of salt stress in pomegranate cultivars. Agronomy, 11(6). https://doi.org/10.3390/agronomy11061038

  • Chaerle, L., & van der Straeten, D. (2000). Imaging techniques and the early detection of plant stress. Trends in Plant Science, 5(11), 495-501. https://doi.org/10.1016/S1360-1385(00)01781-7

  • Feng, F., Zhang, Y., Zhang, J., & Liu, B. (2022). Small sample hyperspectral image classification based on cascade fusion of mixed spatial-spectral features and second-order pooling. Remote Sensing, 14(3), Article 505. https://doi.org/10.3390/rs14030505

  • Fernández, C. I., Leblon, B., Wang, J., Haddadi, A., & Wang, K. (2022). Cucumber powdery mildew detection using hyperspectral data. Canadian Journal of Plant Science, 102(1), 20–32. https://doi.org/10.1139/cjps-2021-0148

  • Fletcher, R. S., & Turley, R. B. (2018). Comparing Canopy Hyperspectral Reflectance Properties of <i>Palmer amaranth</i> to Okra and Super-Okra Leaf Cotton. American Journal of Plant Sciences, 09(13), 2708–2718. https://doi.org/10.4236/ajps.2018.913197

  • Gandhi, G. M., Parthiban, S., Thummalu, N., & Christy, A. (2015). Ndvi: Vegetation Change Detection Using Remote Sensing and Gis – A Case Study of Vellore District. Procedia Computer Science, 57, 1199–1210. https://doi.org/10.1016/j.procs.2015.07.415

  • Ge, Y., Bai, G., Stoerger, V., & Schnable, J. C. (2016). Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput RGB and hyperspectral imaging. Computers and Electronics in Agriculture, 127, 625-632. https://doi.org/10.1016/j.compag.2016.07.028

  • Geladi, P., Burger, J., & Lestander, T. (2004). Hyperspectral imaging: Calibration problems and solutions. Chemometrics and Intelligent Laboratory Systems, 72(2), 209-217. https://doi.org/10.1016/j.chemolab.2004.01.023

  • Hughes, G. F. (1968). On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory, 14(1), 55-63. https://doi.org/10.1109/TIT.1968.1054102

  • Ihuoma, S. O., & Madramootoo, C. A. (2019). Sensitivity of spectral vegetation indices for monitoring water stress in tomato plants. Computers and Electronics in Agriculture, 163, Article 104860. https://doi.org/10.1016/j.compag.2019.104860

  • Isaksson, T., & Næs, T. (1988). The Effect of Multiplicative Scatter Correction (MSC) and Linearity Improvement in NIR Spectroscopy. Applied Spectroscopy, 42(7), 1273–1284. https://doi.org/10.1366/0003702884429869

  • Kastberger, G. & Stachl, R. (2003). Infrared imaging technology and biological applications. Behaviour Research Methods, Instruments & Computers, 35(3), 429-439. https://doi.org/10.3758/BF03195520

  • Li, X., Li, R., MengyuWang, Liu, Y., Zhang, B., & Zhou, J. (2018). Hyperspectral Imaging and Their Applications in the Nondestructive Quality Assessment of Fruits and Vegetables. Hyperspectral Imaging in Agriculture, Food and Environment, 28–63. https://doi.org/10.1016/j.colsurfa.2011.12.014

  • Liu, J., Han, J., Chen, X., Shi, L., & Zhang, L. (2019). Nondestructive detection of rape leaf chlorophyll level based on Vis-NIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 222, 117202. https://doi.org/10.1016/j.saa.2019.117202

  • Lohaus, G., Heldt, H. W., & Osmond, C. B. (2000). Infection with phloem limited abutilon mosaic virus causes localized carbohydrate accumulation in leaves of abutilon striatum: relationships to symptom development and effects on chlorophyll fluorescence quenching during photosynthetic induction. Plant Biology, 2(2), 161-167. https://doi.org/10.1055/s-2000-9461

  • Mishra, P., Lohumi, S., Ahmad Khan, H., & Nordon, A. (2020). Close-range hyperspectral imaging of whole plants for digital phenotyping: Recent applications and illumination correction approaches. Computers and Electronics in Agriculture, 178, Article 105780. https://doi.org/10.1016/j.compag.2020.105780

  • Mishra, P., Polder, G., Gowen, A., Rutledge, D. N., & Roger, J. M. (2020). Utilising variable sorting for normalisation to correct illumination effects in close-range spectral images of potato plants. Biosystems Engineering, 197, 318–323. https://doi.org/10.1016/j.biosystemseng.2020.07.010

  • Mohd Asaari, M. S., Mishra, P., Mertens, S., Dhondt, S., Inzé, D., Wuyts, N., & Scheunders, P. (2018). Close-range hyperspectral image analysis for the early detection of stress responses in individual plants in a high-throughput phenotyping platform. ISPRS Journal of Photogrammetry and Remote Sensing, 138, 121–138. https://doi.org/10.1016/j.isprsjprs.2018.02.003

  • Nilsson, H. E. (1995). Remote sensing and image analysis in plant. Annual Review Phytopathol, 15, 489-527.

  • Ortaç, G., Bilgi, A. S., Taşdemir, K., & Kalkan, H. (2016). A hyperspectral imaging based control system for quality assessment of dried figs. Computers and Electronics in Agriculture, 130, 38-47. https://doi.org/10.1016/j.compag.2016.10.001

  • Pandey, P., Ge, Y., Stoerger, V., & Schnable, J. C. (2017). High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging. Frontiers in Plant Science, 8, Article 1348. https://doi.org/10.3389/fpls.2017.01348

  • Ranjan, S., Nayak, D. R., Kumar, K. S., Dash, R., & Majhi, B. (2017). Hyperspectral image classification: A k-means clustering based approach. 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS), 1–7. https://doi.org/10.1109/ICACCS.2017.8014707

  • Ren, G., Wang, Y., Ning, J., & Zhang, Z. (2020). Using near-infrared hyperspectral imaging with multiple decision tree methods to delineate black tea quality. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 237, 118407. https://doi.org/10.1016/j.saa.2020.118407

  • Sensing, R., Analysis, I., & Plant, I. N. (1995). REMOTE SENSING AND IMAGE ANALYSIS IN PLANT. Annual Review Phytopathol, 15, 489–527.

  • Shaikh, M. S., Jaferzadeh, K., Thörnberg, B., & Casselgren, J. (2021). Calibration of a hyper-spectral imaging system using a low-cost reference. Sensors, 21(11), Article 3738. https://doi.org/10.3390/s21113738

  • Vigneau, N., Ecarnot, M., Rabatel, G., & Roumet, P. (2011). Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in Wheat. Field Crops Research, 122(1), 25–31. https://doi.org/10.1016/j.fcr.2011.02.003

  • Vu, H., Tachtatzis, C., Murray, P., Harle, D., Dao, T. K., Le, T. L., Andonovic, I., & Marshall, S. (n.d.). Rice Seed Varietal Purity Inspection using Hyperspectral Imaging.

  • Witteveen, M., Sterenborg, H. J. C. M., van Leeuwen, T. G., Aalders, M. C. G., Ruers, T. J. M., & Post, A. L. (2022). Comparison of preprocessing techniques to reduce nontissue-related variations in hyperspectral reflectance imaging. Journal of Biomedical Optics, 27(10). https://doi.org/10.1117/1.JBO.27.10.106003

  • Yang, W., Duan, L., Chen, G., Xiong, L., & Liu, Q. (2013). Plant phenomics and high-throughput phenotyping: Accelerating rice functional genomics using multidisciplinary technologies. Current Opinion in Plant Biology, 16(2), 180-187. https://doi.org/10.1016/j.pbi.2013.03.005

  • Zhuang, L., & Ng, M. K. (2020). Hyperspectral mixed noise removal by ℓ1-norm-based subspace representation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 1143-1157. https://doi.org/10.1109/JSTARS.2020.2979801

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles