PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Adnan, S. B. Z., Ariffin, A. A. M., & Misro, M. Y. (2020). Curve fitting using quintic trigonometric Bézier curve. In AIP Conference Proceedings (Vol. 2266, No. 1, p. 040009). AIP Publishing LLC. https://doi.org/10.1063/5.0018099

  • Ammad, M., & Misro, M. Y. (2020). Construction of local shape adjustable surfaces using quintic trigonometric Bézier curve. Symmetry, 12(8), Article 1205. https://doi.org/10.3390/sym12081205

  • Ammad, M., Misro, M. Y., & Ramli, A. (2022). A novel generalized trigonometric Bézier curve: Properties, continuity conditions and applications to the curve modeling. Mathematics and Computers in Simulation, 19, 744-763. https://doi.org/10.1016/j.matcom.2021.12.011

  • Bartkowiak, T., & Brown, C. A. (2019). Multiscale 3D curvature analysis of processed surface textures of aluminum alloy 6061 T6. Materials, 12(2), Article 257. https://doi.org/10.3390/ma12020257

  • Beck, J. M., Farouki, R. T., & Hinds, J. K. (1986). Surface analysis methods. IEEE Computer Graphics and Applications, 6(12), 18-36. https://doi.org/10.1109/MCG.1986.276587

  • Besl, P. J. (2012). Surfaces in range image understanding. Springer Science & Business Media.

  • Bibi, S., Abbas, M., Misro, M. Y., Majeed, A., & Nazir, T. (2021). Construction of generalized hybrid trigonometric Bézier surfaces with shape parameters and their applications. Journal of Mathematical Imaging and Vision, 63(9), 1118-1142. https://doi.org/10.1007/s10851-021-01046-y

  • Chang, K. H. (2016). e-Design: computer-aided engineering design. Academic Press.

  • Chen, Q., & Wang, G. (2003). A class of Bézier-like curves. Computer Aided Geometric Design, 20(1), 29-39. https://doi.org/10.1016/S0167-8396(03)00003-7

  • Devaraj, A. (2020). An overview of curvature. Retrieved May 5, 2021, from https://web.ma.utexas.edu/users/drp/files/Spring2020Projects/DRP_spring2020_final%20-%20Ashwin%20Devaraj.pdf

  • Dill, J. C. (1981). An application of color graphics to the display of surface curvature. In Proceedings of the 8th annual conference on Computer graphics and interactive techniques (pp. 153-161). ACM Publishing. https://doi.org/10.1145/800224.806801

  • Farin, G. (2014). Curves and surfaces for computer-aided geometric design: A practical guide. Elsevier.

  • Farin, G., Hoschek, J., & Kim, M. S. (Eds.). (2002). Handbook of computer aided geometric design. Elsevier. https://doi.org/10.1016/B978-0-444-51104-1.X5000-X

  • Garcia, D. R., Linke, B. S., & Farouki, R. T. (2021). Optimised routine of machining distortion characterization based on Gaussian surface curvature. In 2nd International Conference of the DFG International Research Training Group 2057–Physical Modeling for Virtual Manufacturing (iPMVM 2020) (pp. 1-17). Schloss Dagstuhl-Leibniz-Zentrum für Informatik. https://doi.org10.4230/OASIcs.iPMVM.2020.5

  • Gatzke, T., Grimm, C., Garland, M., & Zelinka, S. (2005). Curvature maps for local shape comparison. In International Conference on Shape Modeling and Applications 2005 (SMI’05) (pp. 244-253). IEEE Publishing. https://doi.org/10.1109/SMI.2005.13

  • Hahmann, S. (1999). Visualisation techniques for surface analysis. In C. Bajaj (Ed.), Advanced visualization techniques (pp. 49-74). JohnWiley.

  • Hu, G., Wu, J., & Qin, X. (2018). A novel extension of the Bézier model and its applications to surface modeling. Advances in Engineering Software, 125, 27-54. https://doi.org/10.1016/j.advengsoft.2018.09.002

  • Ismail, N. H. M., & Misro, M. Y. (2020). Surface construction using continuous trigonometric Bézier curve. In AIP Conference Proceedings (Vol. 2266, No. 1, p. 040012). AIP Publishing LLC. https://doi.org/10.1063/5.0018101

  • Magid, E., Soldea, O., & Rivlin, E. (2007). A comparison of Gaussian and mean curvature estimation methods on triangular meshes of range image data. Computer Vision and Image Understanding, 107(3), 139-159. https://doi.org/10.1016/j.cviu.2006.09.007

  • Marsh, D. (2005). Applied geometry for computer graphics and CAD. Springer Science & Business Media. https://doi.org/10.1007/b138823

  • Misro, M. Y., Ramli, A., & Ali, J. M. (2017). Quintic trigonometric Bézier curve with two shape parameters. Sains Malaysiana, 46(5), 825-831. http://dx.doi.org/10.17576/jsm-2017-4605-17

  • Misro, M. Y., Ramli, A., & Ali, J. M. (2019). Extended analysis of dynamic parameters on cubic trigonometric Bézier transition curves. In 2019 23rd International Conference in Information Visualization–Part II (pp. 141-146). IEEE Publishing. https://doi.org/10.1109/IV-2.2019.00036

  • Oxman, N. (2007). Get real towards performance-driven computational geometry. International Journal of Architectural Computing, 5(4), 663-684. https://doi.org/10.1260/147807707783600771

  • Piegl, L., & Tiller, W. (1996). The NURBS book. Springer Science & Business Media. https://doi.org/10.1007/978-3-642-59223-2

  • Pressley, A. N. (2010). Elementary differential geometry. Springer Science & Business Media. https://doi.org/10.1007/978-1-84882-891-9

  • Razdan, A., & Bae, M. (2005). Curvature estimation scheme for triangle meshes using biquadratic Bézier patches. Computer-Aided Design, 37(14), 1481-1491. https://doi.org/10.1016/j.cad.2005.03.003

  • Seidenberg, L. R., Jerard, R. B., & Magewick, J. (1992). Surface curvature analysis using color. In Proceedings Visualization’92 (pp. 260-267). IEEE Publishing. https://doi.org/10.1109/VISUAL.1992.235200

  • Tan, X., & Zhu, Y. (2019). Quasi-quintic trigonometric Bézier curves with two shape parameters. Computational and Applied Mathematics, 38(4), 1-13. https://doi.org/10.1007/s40314-019-0961-y

  • Zain, S. A. A. A. S. M., Misro, M. Y., & Miura, K. T. (2021). Generalised fractional Bézier curve with shape parameters. Mathematics, 9(17), Article 2141. https://doi.org/10.3390/math9172141

  • Zheng, J., & Sederberg, T. W. (2003). Gaussian and mean curvatures of rational Bézier patches. Computer Aided Geometric Design, 20(6), 297-301. https://doi.org/10.1016/j.cagd.2003.06.002

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles