e-ISSN 2231-8542
ISSN 1511-3701
J
Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Aguilera, F., de la Barrera, P. M., De Angelo, C. H., & Espinoza Trejo, D. R. (2016). Current-sensor fault detection and isolation for induction-motor drives using a geometric approach. Control Engineering Practice, 53, 35-46. https://doi.org/10.1016/j.conengprac.2016.04.014
Ahmad, M., & Mohd-Mokhtar, R. (2020). H-indexed fault sensitive filter design for linear discrete-time uncertain DC motor system. Interciencia, 45(10), 60-74.
Ahmad, S., Ali, N., Ayaz, M., & Ahmad, E. (2017). Design of robust fault detection filter using algorithm for a class of LTI systems. In 13th International Conference on Emerging Technologies (ICET) (pp. 1-5). IEEE Publishing. https://doi.org/10.1109/ICET.2017.8281720
Bachir, S., Tnani, S., Trigeassou, J. C., & Champenois, G. (2006). Diagnosis by parameter estimation of stator and rotor faults occurring in induction machines. IEEE Transactions on Industrial Electronics, 53(3), 963-973. https://doi.org/10.1109/TIE.2006.874258
Belmokhtar, K., Ibrahim, H., & Merabet, A. (2015). Online parameter identification for a DFIG driven wind turbine generator based on recursive least squares algorithm. In IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE) (pp. 965-969). IEEE Publishing. https://doi.org/10.1109/CCECE.2015.7129406
Blanke, M., Kinnaert, M., Lunze, J., & Staroswiecki, M. (2015). Diagnosis and fault-tolerant control (3rd Ed.). Springer.
Bøgh, S. (1995). Multiple hypothesis-testing approaches to FDI for the industrial actuator benchmark. Control Engineering Practice, 3(12), 1763-1768. https://doi.org/10.1016/0967-0661(95)00191-V
Chen, W., Ding, S. X., Haghani, A., Naik, A., Khan, A. Q., & Yin, S. (2011). Observer-based FDI schemes for wind turbine benchmark. IFAC Proceedings Volumes, 44(1), 7073-7078. https://doi.org/10.3182/20110828-6-IT-1002.03469
Cho, S., Gao, Z., & Moan, T. (2018). Model-based fault detection, fault isolation, and fault-tolerant control of a blade pitch system in floating wind turbines. Renewable Energy, 120, 306-321. https://doi.org/10.1016/j.renene.2017.12.102
Da, R., & Lin, C. F. (1996). Sensitivity analysis of the state chi-square test. IFAC Proceedings Volumes, 29(1), 6596-6601. https://doi.org/10.1016/S1474-6670(17)58741-8
Dai, X., Gao, Z., Breikin, T., & Wang, H. (2009). Disturbance attenuation in fault detection of gas turbine engines: A discrete robust observer design. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 39(2), 234-239. https://doi.org/10.1109/TSMCC.2008.2005845
Denkena, B., Bergmann, B., & Stoppel, D. (2020). Reconstruction of process forces in a five-axis milling center with a LSTM neural network in comparison to a model-based approach. Journal of Manufacturing and Materials Processing, 4(3), Article 62. https://doi.org/10.3390/jmmp4030062
Ding, S. X. (2013). Model-based fault diagnosis techniques: design schemes, algorithms, and tools. Springer Science & Business Media.
Ding, S. X. (2014). Data-driven design of fault diagnosis and fault-tolerant control systems. Springer. https://doi.org/10.1007/978-1-4471-6410-4
Ding, S. X., & Frank, P. M. (1990). Fault detection via factorization approach. Systems & Control Letters, 14(5), 431-436. https://doi.org/10.1016/0167-6911(90)90094-B
Ding, S. X., Jeinsch, T., Frank, P. M., & Ding, E. L. (2000). A unified approach to the optimization of fault detection systems. International Journal of Adaptive Control and Signal Processing, 14(7), 725-745. https://doi.org/10.1002/1099-1115(200011)
Ding, S. X., Zhang, P., & Frank, P. M. (2003). Threshold calculation using LMI-technique and its integration in the design of fault detection systems. In 42nd IEEE International Conference on Decision and Control (pp. 469-474). IEEE Publishing. https://doi.org/10.1109/CDC.2003.1272607
Do, M. H., Koenig, D., & Theilliol, D. (2018). Robust H∞ proportional-integral observer for fault diagnosis: Application to vehicle suspension. IFAC-PapersOnLine, 51(24), 536-543. https://doi.org/10.1016/j.ifacol.2018.09.628
Doraiswami, R., & Cheded, L. (2013). A unified approach to detection and isolation of parametric faults using a Kalman filter residual-based approach. Journal of the Franklin Institute, 350(5), 938-965. https://doi.org/10.1016/j.jfranklin.2013.01.005
Dybkowski, M., & Klimkowski, K. (2017). Speed sensor fault detection algorithm for vector control methods based on the parity relations. In 2017 19th European Conference on Power Electronics and Applications (pp. 1-5). IEEE Publishing. https://doi.org/10.23919/EPE17ECCEEurope.2017.8099342
Farhat, A., & Koenig, D. (2015). PI robust fault detection observer for a class of uncertain switched systems using LMIs. IFAC-PapersOnLine, 48(21), 125-130. https://doi.org/10.1016/j.ifacol.2015.09.515
Frank, P. M., Ding, S. X., & Koppen-Seliger B. (2000). Current developments in the theory of FDI. IFAC Proceeding Volumes: 4th IFAC Symposium on Fault Detection, Supervision, and Safety for Technical Processes, 33(11), 17-28.
Franklin, G. F., David-Powell, J., & Emami-Naeini, A. (2019). Feedback control of dynamic systems (8th Ed.). Pearson Prentice Hall.
Gannouni, F., & Hmida, F. B. (2017). Simultaneous state and fault estimation for linear stochastic systems. In 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA) (pp. 59-66). IEEE Publishing. https://doi.org/10.1109/STA.2017.8314965
Gao, Z., Cecati, C., & Ding, S. X. (2015). A survey of fault diagnosis and fault-tolerant techniques-part I: Fault diagnosis with model-based and signal-based approaches. IEEE Transactions on Industrial Electronics, 62(6), 3757-3767. https://doi.org/10.1109/TIE.2015.2417501
Gautam, S., Tamboli, P. K., Patankar, V. H., Duttagupta, S. P., & Roy, K. (2017). Performance evaluation of statistical method for incipient fault detection under noisy environment. IFAC-PapersOnLine, 50(1), 15728-15733. https://doi.org/10.1016/j.ifacol.2017.08.2415
Gertler, J. J. (2017). Fault detection and diagnosis in engineering systems. CRC Press. https://doi.org/10.1201/9780203756126
Hajiyev, C., & Soken, H. E. (2013). Robust adaptive Kalman filter for estimation of UAV dynamics in the presence of sensor/actuator faults. Aerospace Science and Technology, 28(1), 376-383. https://doi.org/10.1016/j.ast.2012.12.003
Herrera, L., & Yao, X. (2018). Parameter identification approach to series DC arc fault detection and localization. In IEEE Energy Conversion Congress and Exposition (ECCE) (pp. 497-501). IEEE Publishing. https://doi.org/10.1109/ECCE.2018.8557679
Hur, H., & Ahn, H. S. (2014). Unknown input H-infinity observer-based localization of a mobile robot with sensor failure. IEEE/ASME Transactions on Mechatronics, 19(6), 1830-1838. https://doi.org/10.1109/TMECH.2014.2298034
Hwang, W., & Huh, K. (2015). Fault detection and estimation for electromechanical brake systems using parity space approach. Journal of Dynamic Systems, Measurement, and Control, 137(1), Article 014504. https://doi.org/10.1115/1.4028184
Isermann, R. (1984). Process fault detection based on modeling and estimation methods - A survey. Automatica, 20(4), 387-404. https://doi.org/10.1016/0005-1098(84)90098-0
Isermann, R. (1997). Supervision, fault-detection, and fault-diagnosis methods - An introduction. Control Engineering Practice, 5(5), 639-652. https://doi.org/10.1016/S0967-0661(97)00046-4
Isermann, R. (2006). Fault-diagnosis systems. Springer.
Jesica, E., & Poznyak, A. (2018). Parameter estimation in continuous-time stochastic systems with correlated noises using the Kalman filter and least squares method. IFAC-PapersOnLine, 51(13), 309-313. https://doi.org/10.1016/j.ifacol.2018.07.296
Jie, C., & Patton, R. J. (2012). Robust model-based fault diagnosis for dynamic systems. Springer. https://doi.org/10.1007/978-1-4615-5149-2
Jokic, I., Zecevic, Z., & Krstajic, B. (2018). State-of-charge estimation of lithium-ion batteries using extended Kalman filter and unscented Kalman filter. In 23rd International Scientific-Professional Conference on Information Technology (IT) (pp. 1-4). IEEE Publishing. https://doi.org/10.1109/SPIT.2018.8350462
Khang, H. V., Kandukuri, S., Pawlus, W., & Robbersmyr, K. G. (2018). Parameter identification of a winding function-based model for fault detection of induction machines. In Eighth International Conference on Information Science and Technology (ICIST) (pp. 200-205). https://doi.org/10.1109/ICIST.2018.8426188
Khazraj, H., Faria da Silva, F., & Bak, C. L. (2016). A performance comparison between extended Kalman filter and unscented Kalman filter in power system dynamic state estimation. In 51st International Universities Power Engineering Conference (UPEC) (pp. 1-6). IEEE Publishing. https://doi.org/10.1109/UPEC.2016.8114125
Kleilat, I., Al-Sheikh, H., Moubayed, N., & Hoblos, G. (2018). Robust fault diagnosis of sensor faults in power converter used in hybrid electric vehicle. IFAC-PapersOnLine, 51(24), 326-331. https://doi.org/10.1016/j.ifacol.2018.09.597
Li, L., Ding, S. X., Zhang, Y., & Yang, Y. (2016). Optimal fault detection design via iterative estimation methods for industrial control systems. Journal of the Franklin Institute, 353(2), 359-377. https://doi.org/10.1016/j.jfranklin.2015.12.002
Li, W., Zhu, Z., Zhou, G., & Chen, G. (2013). Optimal H i /H ∞ fault-detection filter design for uncertain linear time-invariant systems: An iterative linear matrix inequality approach. IET Control Theory & Applications, 7(8), 1160-1167. https://doi.org/10.1049/iet-cta.2012.0954
Lijia, C., Yu, T., & Guo, Z. (2019). Adaptive observer-based fault detection and active tolerant control for unmanned aerial vehicles attitude system. IFAC-PapersOnLine, 52(24), 47-52. https://doi.org/10.1016/j.ifacol.2019.12.379
Liu, X., Wang, Z., Wang, Y., & Shen, Y. (2018). Dynamic threshold computation in fault detection for discrete-time linear systems. In 2018 Chinese Control And Decision Conference (CCDC) (pp. 2241-2246). IEEE Publishing. https://doi.org/10.1109/CCDC.2018.8407499
Liu, Z., & He, H. (2017). Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter. Applied Energy, 185, 2033-2044. https://doi.org/10.1016/j.apenergy.2015.10.168
Marzat, J., Piet-Lahanier, H., Damongeot, F., & Walter, E. (2012). Model-based fault diagnosis for aerospace systems: A survey. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 226(10), 1329-1360. https://doi.org/10.1177/0954410011421717
Mehra, R. K., & Peschon, J. (1971). An innovations approach to fault detection and diagnosis in dynamic systems. Automatica, 7(5), 637-640. https://doi.org/10.1016/0005-1098(71)90028-8
Na, Y., & Ahmad, M. (2019). A fault detection scheme for switched systems with noise under asynchronous switching. In 9th International Conference on Information Science and Technology (ICIST) (pp. 258-262). IEEE Publishing. https://doi.org/10.1109/ICIST.2019.8836838
Nadarajan, S., Panda, S. K., Bhangu, B., & Gupta, A. K. (2016). Online model-based condition monitoring for brushless wound-field synchronous generator to detect and diagnose stator windings turn-to-turn shorts using extended Kalman filter. IEEE Transactions on Industrial Electronics, 63(5), 3228-3241. https://doi.org/10.1109/TIE.2016.2535959
Nikiforov, I., Varavva, V., & Kireichikov, V. (1993). Application of statistical fault detection algorithms to navigation systems monitoring. Automatica, 29(5), 1275-1290. https://doi.org/10.1016/0005-1098(93)90050-4
Odendaal, H. M., & Jones, T. (2014). Actuator fault detection and isolation: An optimized parity space approach. Control Engineering Practice, 26, 222-232. https://doi.org/10.1016/j.conengprac.2014.01.013
Patton, R. J., & Chen, J. (2000). On eigenstructure assignment for robust fault diagnosis. International Journal of Robust and Nonlinear Control, 10(14), 1193-1208. https://doi.org/10.1002/1099-1239(20001215)10:14<1193::AID-RNC523>3.0.CO;2-R
Perrin, O., Basseville, M., Sorine, M., & Zhang, Q. (2004). On-board diesel particulate filter fault detection using an adaptive observer. IFAC Proceedings Volumes, 37(22), 367-372. https://doi.org/10.1016/S1474-6670(17)30371-3
Pourasghar, M., Puig, V., & Ocampo-Martinez, C. (2020). Characterization of interval-observer fault detection and isolation properties using the set-invariance approach. Journal of the Franklin Institute, 357(3), 1853-1886. https://doi.org/10.1016/j.jfranklin.2019.11.027
Pourbabaee, B., Meskin, N., & Khorasani, K. (2016). Sensor fault detection, isolation, and identification using multiple-model-based hybrid Kalman filter for gas turbine engines. IEEE Transactions on Control Systems Technology, 24(4), 1184-1200. https://doi.org/10.1109/TCST.2015.2480003
Rasoolzadeh, A., & Salmasi, F. R. (2020). Mitigating zero dynamic attacks in communication link-enabled droop-controlled hybrid AC/DC microgrids. IET Cyber-Physical Systems: Theory & Applications, 5(2), 207-217. https://doi.org/10.1049/iet-cps.2019.0043
Sun, B., Wang, J., He, Z., Qin, Y., Wang, D., & Zhou, H. (2019). Fault detection for closed-loop control systems based on parity space transformation. IEEE Access, 7, 75153-75165. https://doi.org/10.1109/ACCESS.2019.2916785
Tripathi, R. P., Ghosh, S., & Chandle, J. O. (2016). Tracking of object using optimal adaptive Kalman filter. In 2016 IEEE International Conference on Engineering and Technology (ICETECH) (pp. 1128-1131). IEEE Publishing. https://doi.org/10.1109/ICETECH.2016.7569426
Wang, Y., Liu, Q., Li, K., Yin, L., & Chen, H. (2019). Resilient fault and attack detection of DCT vehicles using parity space approach. In 2019 Chinese Automation Congress (CAC) (pp. 431-436). IEEE Publishing. https://doi.org/10.1109/CAC48633.2019.8996359
Willsky, A., & Jones, H. (1976). A generalized likelihood ratio approach to the detection and estimation of jumps in linear systems. IEEE Transactions on Automatic Control, 21(1), 108-112. https://doi.org/10.1109/TAC.1976.1101146
Wünnenberg, J., & Frank, P. M. (1987). Sensor fault detection via robust observers. In S. Tzafestas, M. Singh & G. Schmidt (Eds.), System Fault Diagnostics, Reliability and Related Knowledge-Based Approaches (pp. 147-160). Springer. https://doi.org/10.1007/978-94-009-3929-5_5
Yang, X., Chen, Y., Li, B., & Luo, D. (2020). Battery states online estimation based on exponential decay particle swarm optimization and proportional-integral observer with a hybrid battery model. Energy, 191, Article 116509. https://doi.org/10.1016/j.energy.2019.116509
Ye, H., Wang, W., & Zhai, S. (2015). Fault diagnosis based on parameter estimation in closed-loop systems. IET Control Theory & Applications, 9(7), 1146-1153. https://doi.org/10.1049/iet-cta.2014.0717
Zammali, C., Van Gorp, J., Wang, Z., & Raïssi, T. (2020). Sensor fault detection for switched systems using interval observer with L∞ performance. European Journal of Control, 57, 147-156. https://doi.org/10.1016/j.ejcon.2020.06.004
Zhang, K., Jiang, B., Yan, X. G., & Mao, Z. (2017). Incipient sensor fault estimation and accommodation for inverter devices in electric railway traction systems. International Journal of Adaptive Control and Signal Processing, 31(5), 785-804. https://doi.org/10.1002/acs.2730
Zhang, P., Ye, H., Ding, S. X., Wang, G. Z., & Zhou, D. H. (2006). On the relationship between parity space and approaches to fault detection. Systems & Control Letters, 55(2), 94-100. https://doi.org/10.1016/j.sysconle.2005.05.006
Zhang, Y., & Jiang, J. (2008). Bibliographical review on reconfigurable fault-tolerant control systems. Annual Reviews in Control, 32(2), 229-252. https://doi.org/10.1016/j.arcontrol.2008.03.008
Zhang, Z. H., Li, S., Yan, H., & Fan, Q. Y. (2019). Sliding mode switching observer-based actuator fault detection and isolation for a class of uncertain systems. Nonlinear Analysis: Hybrid Systems, 33, 322-335. https://doi.org/10.1016/j.nahs.2019.04.001
Zhirabok, A. N., Shumsky, A. E., & Zuev, A. V. (2018). Sliding mode observers for fault detection in linear dynamic systems. IFAC-PapersOnLine, 51(24), 1403-1408. https://doi.org/10.1016/j.ifacol.2018.09.540
Zhong, M., Ding, S. X., Lam, J., & Wang, H. (2003). An LMI approach to design robust fault detection filters for uncertain LTI systems. Automatica, 39(3), 543-550. https://doi.org/10.1016/S0005-1098(02)00269-8
Zhong, M., Song, Y., Xue, T., Yang, R., & Li, W. (2018). Parity space-based fault detection by minimum error minimax probability machine. IFAC-PapersOnLine, 51(24), 1292-1297. https://doi.org/10.1016/j.ifacol.2018.09.568
Zhou, J., & Zhang, D. (2019). H-infinity fault detection for delta operator systems with random two-channels packet losses and limited communication. IEEE Access, 7, 94448-94459. https://doi.org/10.1109/ACCESS.2019.2928306
Zhu, Y., & Gao, Z. (2014). Robust observer-based fault detection via evolutionary optimization with applications to wind turbine systems. In 9th IEEE Conference on Industrial Electronics and Applications (pp. 1627-1632). IEEE Publishing. https://doi.org/10.1109/ICIEA.2014.6931428
ISSN 1511-3701
e-ISSN 2231-8542