PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Special Issue / JST Vol. 32 (S4) 2024 / JST(S)-0623-2024

 

A Review of Landslide Conditioning Factors in the Tropical Forests

Ahmad Syakir Jasni, Bate Saverinus, Zulfa Abdul Wahab, Law Tze Ding, Rhyma Purnamasayangsukasih Parman, Sheriza Mohd Razali, Jamhuri Jamaluddin, Siti Nurhidayu Abu Bakar, Hazandy Abdul Hamid and Norizah Kamarudin

Pertanika Journal of Science & Technology, Volume 32, Issue S4, December 2024

DOI: https://doi.org/10.47836/pjst.32.S4.04

Keywords: Conditioning factor, landslide, risk, tropical forests, predisposing factor

Published on: 30 September 2024

A variety of natural and human-induced factors can trigger landslides. A combination of these factors, with several key factor characteristics, may increase the risk of landslides. This paper reviews the comprehensive conditioning factors that contribute to landslide occurrence. Landslide occurrence varied with the conditioning factors and has been documented in response to the need to understand and mitigate the risks associated with these natural events. Twenty-six conditioning factors were identified in landslide occurrences from 16 articles reviewed using a systematic literature review with PRISMA guidelines. All 16 articles study landslides: Malaysia (66% of the article), Indonesia (13% of the article), Vietnam, Philippines and Brazil (7% of the article for each country) mostly applied the conditioning factors for landslides susceptibility map modeling. The discussion of this work focuses on the conditioning factor of landslides in tropical forests. This study is crucial in improving risk assessment and developing effective mitigation and management strategies. In addition, the information from this study can be used in future studies to develop and validate models that simulate landslide processes under different conditions and are essential for predicting potential landslide events and their impacts.

  • Alkhasawneh, M. S., Ngah, U. K., Tay, L. T., Mat Isa, N. A., & Al-batah, M. S. (2013). Determination of important topographic factors for landslide mapping analysis using MLP network. The Scientific World Journal, 2013, 415023. http://dx.doi.org/10.1155/2013/415023

  • Al-Najjar, H. A., Kalantar, B., Pradhan, B., & Saeidi, V. (2019, October 3). Conditioning factor determination for mapping and prediction of landslide susceptibility using machine learning algorithms.Proceedings Earth Resources and Environmental Remote Sensing/GIS Applications X (Vol. 11156, pp. 97-107). SPIE. https://doi.org/10.1117/12.2532687

  • Althuwaynee, O. F., Pradhan, B., & Lee, S. (2012). Application of an evidential belief function model in landslide susceptibility mapping. Computers & Geosciences, 44, 120-135. https://doi.org/10.1016/j.cageo.2012.03.003

  • Arfadly, A. R., Zubair, H., Mahyuddin, M., & Soma, A. S. (2023). Effect landslide hazard mitigation using an integrated of Analytical Hierarchy Process and Multi Criteria Evaluation: A case study the Jeneberang watershed. In E3S Web of Conferences (Vol. 373). EDP Sciences. https://doi.org/10.1051/e3sconf/202337306001

  • Aristizábal, E., Martínez-Carvajal, H., & García-Aristizábal, E. (2017). Modelling shallow landslides triggered by rainfall in tropical and mountainous basins. In Advancing Culture of Living with Landslides: Volume 4 Diversity of Landslide Forms (pp. 207-212). Springer International Publishing. https://doi.org/10.1007/978-3-319-53485-5_23

  • Canavesi, V., Segoni, S., Rosi, A., Ting, X., Nery, T., Catani, F., & Casagli, N. (2020). Different approaches to use morphometric attributes in landslide susceptibility mapping based on meso-scale spatial units: A case study in Rio de Janeiro (Brazil). Remote Sensing, 12(11), 1826. https://doi.org/10.3390/rs12111826

  • Diara, I. W., Suyarto, R., & Saifulloh, M. (2022). Spatial distribution of landslide susceptibility in new road construction Mengwitani-Singaraja, Bali-Indonesia: Based on geospatial data. Geomate Journal, 23(96), 95-103. https://doi.org/10.21660/2022.96.3320

  • Ehsani, A. H., & Malekian, A. (2012). Landforms identification using neural network-self organizing map and SRTM data. Desert, 16(2), 111-122. https://doi.org/10.1117/12.737949

  • Forbes, K., Broadhead, J., Brardinoni, A. D., Gray, D., & Stokes, B. V. (2013). Forests and landslides: The role of trees and forests in the prevention of landslides and rehabilitation of landslide-affected areas in Asia (2nd ed.). RAP Publication.

  • Gonzalez, F. C. G., Cavacanti, M. D. C. R., Ribeiro, W. N., de Mendonça, M. B., & Haddad, A. N. (2024). A systematic review on rainfall thresholds for landslides occurrence. Heliyon, 10(1), e23247. https://doi.org/10.1016/j.heliyon.2023.e23247

  • Hashim, M., Misbari, S., & Pour, A. B. (2018). Landslide mapping and assessment by integrating Landsat-8, PALSAR-2 and GIS techniques: A case study from Kelantan State, Peninsular Malaysia. Journal of the Indian Society of Remote Sensing, 46, 233-248. https://doi.org/10.1007/s12524-017-0675-9

  • Ibrahim, M. B., Mustaffa, Z., Balogun, A. L., Hamonangan Harahap, I. S., & Ali Khan, M. (2021). Advanced data mining techniques for landslide susceptibility mapping. Geomatics, Natural Hazards and Risk, 12(1), 2430-2461. https://doi.org/10.1080/19475705.2021.1960433

  • Javier, D. N., & Kumar, L. (2019). Frequency ratio landslide susceptibility estimation in a tropical mountain region. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 173-179. https://doi.org/10.5194/isprs-archives-xlii-3-w8-173-2019

  • Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2015). Using ALOS PALSAR derived high-resolution DInSAR to detect slow-moving landslides in tropical forest: Cameron Highlands, Malaysia. Geomatics, Natural Hazards, and Risk, 6(8), 741-759. https://doi.org/10.1080/19475705.2013.860407

  • Kalantar, B., Pradhan, B., Naghibi, S. A., Motevalli, A., & Mansor, S. (2018). Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomatics, Natural Hazards and Risk, 9(1), 49-69. https://doi.org/10.1080/19475705.2017.1407368

  • Komoo, I. (2022). Gelinciran tanah, aliran puing punca utama bencana banjir puing 2021. Malaysia Post [Unpublished MalaysiaPost]. Retrieved on 23rd November 2023.

  • Lee, S. (2019). Current and future status of GIS-based landslide susceptibility mapping: A literature review. Korean Journal of Remote Sensing, 35(1), 179-193. https://doi.org/10.7780/kjrs.2019.35.1.12

  • Lee, M. L., Ng, K. Y., Huang, Y. F., & Li, W. C. (2014). Rainfall-induced landslides in Hulu Kelang area, Malaysia. Natural Hazards, 70, 353-375. https://doi.org/10.1007/s11069-013-0814-8

  • Li, G., West, A. J., Densmore, A. L., Hammond, D. E., Jin, Z., Zhang, F., Wang, J., & Hilton, R. G. (2016). Connectivity of earthquake‐triggered landslides with the fluvial network: Implications for landslide sediment transport after the 2008 Wenchuan earthquake. Journal of Geophysical Research: Earth Surface, 121(4), 703-724. https://doi.org/10.1002/2015jf003718

  • Mancini, F., Ceppi, C., & Ritrovato, G. (2010). GIS and statistical analysis for landslide susceptibility mapping in the Daunia area, Italy. Natural Hazards and Earth System Sciences, 10(9), 1851-1864. https://doi.org/10.5194/nhess-10-1851-2010

  • Mansor, S., Saadatkhah, N., Khuzaimah, Z., Asmat, A., Adnan, N. A., & Adam, S. N. (2018). Regional modelling of rainfall-induced runoff using hydrological model by incorporating plant cover effects: Case study in Kelantan, Malaysia. Natural Hazards, 93, 739-764. https://doi.org/10.1007/s11069-018-3322-z

  • Maturidi, A. M. A. M., Kasim, N., Taib, K. A., Azahar, W. N. A. W., & Tajuddin, H. B. A. (2021). Empirically based rainfall threshold for landslides occurrence in Peninsular Malaysia. KSCE Journal of Civil Engineering, 25, 4552-4566. https://doi.org/10.1007/s12205-021-1586-4

  • Medwedeff, W. G., Clark, M. K., Zekkos, D., & West, A. J. (2020). Characteristic landslide distributions: An investigation of landscape controls on landslide size. Earth and Planetary Science Letters, 539, 116203. https://doi.org/10.1016/j.epsl.2020.116203

  • Mohamed Shaffril, H. A., Samsuddin, S. F., & Abu Samah, A. (2021). The ABC of systematic literature review: The basic methodological guidance for beginners. Quality & Quantity, 55, 1319-1346. https://doi.org/10.1007/s11135-020-01059-6

  • Nhu, V. H., Mohammadi, A., Shahabi, H., Ahmad, B. B., Al-Ansari, N., Shirzadi, A., Clague, J. J., Jaafari, A., Chen, W., & Nguyen, H. (2020). Landslide susceptibility mapping using machine learning algorithms and remote sensing data in a tropical environment. International Journal of Environmental Research and Public Health, 17(14), 4933. https://doi.org/10.1038/srep09899

  • Norizah, K. (2022, July). Suitability modelling: An application to forest road development planning in Peninsular Malaysia. In IOP Conference Series: Earth and Environmental Science (Vol. 1064, No. 1, p. 012053). IOP Publishing. https://doi.org/10.1088/1755-1315/1064/1/012053

  • Nsengiyumva, J. B., & Valentino, R. (2020). Predicting landslide susceptibility and risks using GIS-based machine learning simulations, case of upper Nyabarongo catchment. Geomatics, Natural Hazards and Risk, 11(1), 1250-1277. https://doi.org/10.1080/19475705.2020.1785555

  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McGuinness , L. A., …& Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. International Journal of Surgery, 88, 105906. https://doi.org/10.1186/s13643-021-01626-4

  • Park, S., & Kim, J. (2019). Landslide susceptibility mapping based on random forest and boosted regression tree models, and a comparison of their performance. Applied Sciences, 9(5), 942. https://doi.org/10.3390/app9050942

  • Peduzzi, P. (2010). Landslides and vegetation cover in the 2005 North Pakistan earthquake: A GIS and statistical quantitative approach. Natural Hazards and Earth System Sciences, 10(4), 623-640. https://doi.org/10.5194/nhess-10-623-2010

  • Pradhan, B. (2011). Use of GIS-based fuzzy logic relations and its cross application to produce landslide susceptibility maps in three test areas in Malaysia. Environmental Earth Sciences, 63(2), 329-349. https://doi.org/10.1007/s12665-010-0705-1

  • Pradhan, B., Oh, H. J., & Buchroithner, M. (2010). Weights-of-evidence model applied to landslide susceptibility mapping in a tropical hilly area. Geomatics, Natural Hazards and Risk, 1(3), 199-223. https://doi.org/10.1080/19475705.2010.498151

  • Pradhan, B., & Lee, S. (2010). Landslide susceptibility assessment and factor effect analysis: Backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environmental Modelling & Software, 25(6), 747-759. https://doi.org/10.1016/j.envsoft.2009.10.016

  • Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., & Guzzetti, F. (2018). A review of statistically-based landslide susceptibility models. Earth-science Reviews, 180, 60-91. https://doi.org/10.1016/j.earscirev.2018.03.001

  • Roback, K., Clark, M. K., West, A. J., Zekkos, D., Li, G., Gallen, S. F., Chamlagain, D., & Godt, J. W. (2018). The size, distribution, and mobility of landslides caused by the 2015 Mw7. 8 Gorkha earthquake, Nepal. Geomorphology, 301, 121-138. https://doi.org/10.1016/j.geomorph.2017.01.030

  • Saadatkhah, N., Mansor, S., Kassim, A., Lee, L. M., Saadatkhah, R., & Sobhanmanesh, A. (2016). Regional modeling of rainfall-induced landslides using TRIGRS model by incorporating plant cover effects: Case study in Hulu Kelang, Malaysia. Environmental Earth Sciences, 75, 1-20. https://doi.org/10.1007/s12665-016-5326-x

  • Selamat, S. N., Majid, N. A., Taha, M. R., & Osman, A. (2022). Landslide susceptibility model using Artificial Neural Network (ANN) approach in Langat River Basin, Selangor, Malaysia. Land, 11(6), 833. https://doi.org/10.3390/land11060833

  • Sezer, E. A., Pradhan, B., & Gokceoglu, C. (2011). Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang Valley, Malaysia. Expert Systems with Applications, 38(7), 8208-8219. https://doi.org/10.1016/j.eswa.2010.12.167

  • Shahabi, H., & Hashim, M. (2015). Landslide susceptibility mapping using GIS-based statistical models and remote sensing data in tropical environment. Scientific Reports, 5(1), 9899. https://doi.org/10.1038/srep09899

  • Shirvani, Z. (2020). A holistic analysis for landslide susceptibility mapping applying geographic object-based random forest: A comparison between protected and non-protected forests. Remote Sensing, 12(3), 434. https://doi.org/10.3390/rs12030434

  • Soma, A. S., & Kubota, T. (2018). Landslide susceptibility map using certainty factor for hazard mitigation in mountainous areas of Ujung-loe watershed in South Sulawesi. Forest and Society, 2(1), 79-91. https://doi.org/10.24259/fs.v2i1.3594

  • Wang, H., Zhang, L., Luo, H., He, J., & Cheung, R. W. M. (2021). AI-powered landslide susceptibility assessment in Hong Kong. Engineering Geology, 288, 106103. https://doi.org/10.1016/j.enggeo.2021.106103

  • Youssef, A. M., Pradhan, B., Pourghasemi, H. R., & Abdullahi, S. (2015). Landslide susceptibility assessment at Wadi Jawrah Basin, Jizan region, Saudi Arabia using two bivariate models in GIS. Geosciences Journal, 19, 449-469. https://doi.org/10.1007/s12303-014-0065-z

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST(S)-0623-2024

Download Full Article PDF

Share this article

Recent Articles