e-ISSN 2231-8526
ISSN 0128-7680
Nadiah Aqilahwati Abdullah, Nurul Farhana Mohd Yusof and Zaidi Mohd Ripin
Pertanika Journal of Science & Technology, Volume 32, Issue 3, April 2024
DOI: https://doi.org/10.47836/pjst.32.3.03
Keywords: Four-ball, friction, MoS2, palm olein grease, wear
Published on: 24 April 2024
In this study, palm olein-based grease with a micro-molybdenum disulfide (MoS2) additive has been developed. The grease was prepared using various MoS2 concentrations to investigate the role of additives in improving grease performance. A four-ball tribological test was conducted to investigate the surface morphology, wear depth, and volume loss of the steel ball. The results indicated that the MoS2 additive reduced the coefficient of friction and wear scar diameter compared to pure palm olein grease. The value of 0.5 wt.% was considered the optimum value, reflecting the best grease performance indicated by low friction coefficient, wear diameter, wear depth, and volume loss. Elemental analysis revealed that the MoS2 additive was deposited onto the wear tracks, improving the surface protection. Thus, this additive was found to have a good potential for improving palm olein-based grease.
Abdollah, M. F., Amiruddin, H., & Jamallulil, A. D. (2020). Experimental analysis of tribological performance of palm oil blended with hexagonal boron nitride nanoparticles as an environment-friendly lubricant. The International Journal of Advanced Manufacturing Technology, 106, 4183-4191. https://doi.org/10.1007/s00170-019-04906-5
Abdulbari, H. A., & Zuhan, N. (2018). Grease formulation from palm oil industry wastes. Waste and Biomass Valorization, 9(12), 2447-2457. https://doi.org/10.1007/s12649-018-0237-6
American Society for Testing and Materials. (2017). Standard test methods for cone penetration of lubricating grease (ASTM D217-02). ASTM International.
American Society for Testing and Materials. (2010). Standard test method for dropping point of lubricating grease (ASTM D556-02). ASTM International.
American Society for Testing and Materials. (2010). Standard test method for wear preventive characteristics of lubricating grease (Four-ball method) (ASTM D 2266 – 01). ASTM International
Bagi, S. D., & Aswath, P. B. (2015). Mechanism of friction and wear in MoS2 and ZDDP/F-PTFE greases under spectrum loading conditions. Lubricants, 3(4), 687-711. https://doi.org/10.3390/lubricants3040687
Blau, P. (2005). On the nature of running-in. Tribology International, 38(11-12), 1007-1012. https://doi.org/10.1016/j.triboint.2005.07.020
Borda, F. L. G., Oliveira, S. J. R., Lazaro, L. M. S. M., & Leiroz, A. J. K. (2018). Experimental investigation of the tribological behavior of lubricants with additive containing copper nanoparticles. Tribology International, 117, 52-58. https://doi.org/10.1016/j.triboint.2017.08.012
Chaurasia, S. K., Singh, N. K., & Singh, L. K. (2020). Friction and wear behavior of chemically modified Sal (Shorea Robusta) oil for bio based lubricant application with effect of CuO nanoparticles. Fuel, 282, Article 118762. https://doi.org/10.1016/j.fuel.2020.118762
Du, S., Sun, J., & Wu, P. (2018). Preparation, characterization and lubrication performances of graphene oxide-TiO2 nanofluid in rolling strips. Carbon, 140, 338-351. https://doi.org/10.1016/j.carbon.2018.08.055
Fan, X., Li, W., Li, H., Zhu, M., Xia, Y., & Wang, J. (2018). Probing the effect of thickener on tribological properties of lubricating greases. Tribology International, 118, 128-139. https://doi.org/10.1016/j.triboint.2017.09.025
Fox, N. J., & Stachowiak, G. W. (2007). Vegetable oil-based lubricants - A review of oxidation. Tribology International, 40(7), 1035-1046. https://doi.org/10.1016/j.triboint.2006.10.001
Gong, L., Qian, S., Wang, W., Ni, Z., & Tang, L. (2021). Influence of nano-additives (nano-PTFE and nano-CaCO3) on tribological properties of food-grade aluminum-based grease. Tribology International, 160, Article 107014. https://doi.org/10.1016/j.triboint.2021.107014
Gulzar, M., Mahmood, K., Zahid, R., Alabdulkarem, A., Masjuki, H. H., Kalam, M. A., Varman, M., Zulkifli, N. W. M., Ahmad, P., & Malik, M. S. S. (2017). The effect of particle size on the dispersion and wear protection ability of MoS2 particles in polyalphaolefin and trimethylolpropane ester. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 232(8), 987-998. https://doi.org/10.1177/1350650117749404
Gulzar, M., Masjuki, H. H., Varman, M., Kalam, M. A., Mufti, R., Mohd Zulkifli, N. W., Yunus, R., & Zahid, R. (2015). Improving the AW/EP ability of chemically modified palm oil by adding CuO and MoS2 nanoparticles. Tribology International, 88, 271-279. https://doi.org/10.1016/j.triboint.2015.03.035
He, Q., Li, A., Guo, Y., Liu, S., Zhang, Y., & Kong, L. (2018). Tribological properties of nanometer cerium oxide as additives in lithium grease. Journal of Rare Earths, 36(2), 209-214. https://doi.org/10.1016/j.jre.2017.09.004
Heikal, E. K., Elmelawy, M. S., Khalil, S. A., & Elbasuny, N. M. (2017). Manufacturing of environment friendly biolubricants from vegetable oils. Egyptian Journal of Petroleum, 26(1), 53-59. https://doi.org/10.1016/j.ejpe.2016.03.003
Holinski, R., & Gänsheimer, J. (1972). A study of the lubricating mechanism of molybdenum disulfide. Wear, 19(3), 329-342. https://doi.org/10.1016/0043-1648(72)90124-X
Hou, X., Jiang, H., Ali, M. K. A., Liu, H., Su, D., & Tian, Z. (2020). Dispersion behavior assessment of the molybdenum disulfide nanomaterials dispersed into poly alpha olefin. Journal of Molecular Liquids, 311, Article 113303. https://doi.org/10.1016/j.molliq.2020.113303
Hu, E. Z., Xu, Y., Hu, K. H., & Hu, X. G. (2017). Tribological properties of 3 types of MoS2 additives in different base greases. Lubrication Science, 29(8), 541-555. https://doi.org/10.1002/ls.1387
Hu, X. (2005). On the size effect of molybdenum disulfide particles on tribological performance. Industrial Lubrication and Tribology, 57(6), 255-259. https://doi.org/10.1108/00368790510622353
Jabal, M. H., Ani, F. N., & Syahrullail, S. (2014). The tribological characteristic of the blends of RBD palm olein with mineral oil using four-ball tribotester. Jurnal Teknologi, 69(6), 11-14. https://doi.org/10.11113/jt.v69.3232
Koshy, C. P., Rajendrakumar, P. K., & Thottackkad, M. V. (2015). Evaluation of the tribological and thermo-physical properties of coconut oil added with MoS2 nanoparticles at elevated temperatures. Wear, 330-331, 288-308. https://doi.org/10.1016/j.wear.2014.12.044
Kozdrach, R., & Skowroński, J. (2018). The application of polyvinylpyrrolidone as a modifier of tribological properties of lubricating greases based on linseed oil. Journal of Tribology, 140(6), Article 061801. https://doi.org/10.1115/1.4040054
Kumar, N., Saini, V., & Bijwe, J. (2020). Performance properties of lithium greases with PTFE particles as additive: Controlling parameter-size or shape? Tribology International, 148, Article 106302. https://doi.org/10.1016/j.triboint.2020.106302
Mannekote, J. K., & Kailas, S. V. (2012). The effect of oxidation on the tribological performance of few vegetable oils. Journal of Materials Research and Technology, 1(2), 91-95. https://doi.org/10.1016/S2238-7854(12)70017-0
Mushtaq, Z., & Hanief, M. (2021). Evaluation of tribological performance of jatropha oil modified with molybdenum disulphide micro-particles for steel-steel contacts. Journal of Tribology, 143(2), Article 021401. https://doi.org/10.1115/1.4047752
Nabhan, A., Rashed, A., Ghazaly, N. M., Abdo, J., & Haneef, M. D. (2021). Tribological properties of Al2O3 nanoparticles as lithium grease additives. Lubricants, 9(1), Article 9. https://doi.org/10.3390/lubricants9010009
Nagendramma, P., & Kumar, P. (2015). Eco-friendly multipurpose lubricating greases from vegetable residual oils. Lubricants, 3(4), 628-636. https://doi.org/10.3390/lubricants3040628
Nowak, P., Kucharska, K., & Kamiński, M. (2019). Ecological and health effects of lubricant oils emitted into the environment. International Journal of Environmental Research and Public Health, 16(16), Article 3002. https://doi.org/10.3390/ijerph16163002
Pande, G., Akoh, C. C., & Lai, O. M. (2012). 19 - Food uses of palm oil and its components. In O. M. Lai, C. P. Tan & C. C. Akoh (Eds.), Palm Oil (pp. 561-586). AOCS Press. https://doi.org/10.1016/B978-0-9818936-9-3.50022-8
Qiang, H., Anling, L., Yangming, Z., Liu, S., & Yachen, G. (2017). Experimental study of tribological properties of lithium-based grease with Cu nanoparticle additive. Tribology-Materials, Surfaces & Interfaces, 11(2), 75-82. https://doi.org/10.1080/17515831.2017.1311560
Quinchia, L. A., Delgado, M. A., Reddyhoff, T., Gallegos, C., & Spikes, H. A. (2014). Tribological studies of potential vegetable oil-based lubricants containing environmentally friendly viscosity modifiers. Tribology International, 69, 110-117. https://doi.org/10.1016/j.triboint.2013.08.016
Razak, I. H. A., & Ahmad, M. A. (2021). Tribological behavior of calcium complex palm-biogrease with green additives. Tribology in Industry, 43(1), 139-149. https://doi.org/10.24874/ti.1002.11.20.02
Reeves, C. J., Menezes, P. L., Jen, T. C., & Lovell, M. R. (2015). The influence of fatty acids on tribological and thermal properties of natural oils as sustainable biolubricants. Tribology International, 90, 123-134. https://doi.org/10.1016/j.triboint.2015.04.021
Srinivas, V., Thakur, R. N., Jain, A. K., & Babu, M. S. (2017). Tribological studies of transmission oil dispersed with molybdenum disulfide and tungsten disulfide nanoparticles. Journal of Tribology, 139(4), Article 041301. https://doi.org/10.1115/1.4034766
Sukirno, Fajar, R., Bismo, S., & Nasikin, M. (2009). Biogrease based on palm oil and lithium soap thickener: Evaluation of antiwear property. World Applied Sciences Journal, 6(30), 401-407.
Sukirno, Ludi, Fajar, R., Bismo, & Nasikin. (2010). Anti-wear properties of bio-grease from modified palm oil and calcium soap thickener. Agricultural Engineering International: The CIGR Journal, 12(2), 64-69.
Tabee, E., Azadmard-Damirchi, S., Jägerstad, M., & Dutta, P. C. (2008). Effects of α-tocopherol on oxidative stability and phytosterol oxidation during heating in some regular and high-oleic vegetable oils. Journal of the American Oil Chemists’ Society, 85(9), 857-867. https://doi.org/10.1007/s11746-008-1274-2
Wang, W., Zhao, W., Ma, Q., Kouediatouka, A. N., Zhang, H., Dong, G., Hua, M., & Tam, H. Y. (2022). Synergistic lubrication for textured surfaces using polar and nonpolar lubricants. Journal of Tribology, 145(1), Article 012201. https://doi.org/10.1115/1.4055715
Waqas, M., Zahid, R., Bhutta, M. U., Khan, Z. A., & Saeed, A. (2021). A review of friction performance of lubricants with nano additives. Materials, 14(21), Article 6310. https://doi.org/10.3390/ma14216310
Winer, W. O. (1967). Molybdenum disulfide as a lubricant: A review of the fundamental knowledge. Wear, 10(6), 422-452. https://doi.org/10.1016/0043-1648(67)90187-1
Wu, H., Wang, L., Johnson, B., Yang, S., Zhang, J., & Dong, G. (2018). Investigation on the lubrication advantages of MoS2 nanosheets compared with ZDDP using block-on-ring tests. Wear, 394-395, 40-49. https://doi.org/10.1016/j.wear.2017.10.003
Xu, Z. Y., Hu, K. H., Han, C. L., Hu, X. G., & Xu, Y. F. (2013). Morphological influence of molybdenum disulfide on the tribological properties of rapeseed oil. Tribology Letters, 49(3), 513-524. https://doi.org/10.1007/s11249-012-0092-8
Yahaya, W. M. A. W., Dandan, M. A., Samion, S., & Musa, M. N. (2018). A comprehensive review on palm oil and the challenges using vegetable oil as lubricant base-stock. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 52(2), 182-197.
Yu, R., Liu, J., & Zhou, Y. (2019). Experimental study on tribological property of MoS2 nanoparticle in castor oil. Journal of Tribology, 141(10), Article 102001. https://doi.org/10.1115/1.4044294
Zulhanafi, P., & Syahrullail, S. (2019). The tribological performances of super olein as fluid lubricant using four-ball tribotester. Tribology International, 130, 85-93. https://doi.org/10.1016/j.triboint.2018.09.013
ISSN 0128-7680
e-ISSN 2231-8526