PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Special Issue / JST Vol. 32 (S4) 2024 / JST(S)-0621-2024

 

Evaluation of Physico-Static and Dynamic Elastic Properties of Eucalyptus pellita in Various Thinning Intensities

Noorsyazwani Mansoor, Adlin Sabrina Muhammad Roseley, Seca Gandaseca, Sabiha Salim, Rasdianah Dahali2 and Lee Seng Hua

Pertanika Journal of Science & Technology, Volume 32, Issue S4, December 2024

DOI: https://doi.org/10.47836/pjst.32.S4.01

Keywords: Acoustic velocity (AV), bending strength, Eucalyptus pellita, thinning treatments

Published on: 30 September 2024

Acoustic velocity (AV) offers a non-destructive means of reliably measuring wood properties, presenting a valuable alternative to the traditional method known for its destructiveness, costliness, and time consumption. This technique is widely used in the timber industry to predict the bending strength of standing trees and logs. Hence, a study was conducted to assess the dynamic and static elastic properties of Eucalyptus pellita in various thinning intensities using the AV technique and laboratory testing. The selected 11-year-old E. pellita wood was obtained from thinning trials in Sabah Softwood Berhad, Brumas, Sabah. This investigation collected samples from three distinct thinning intensities (0%, 40%, and 60%). Dynamic modulus of elasticity (MOE), which relies on the time of flight (TOF) principle, was measured using an acoustic velocity approach, and physical and static testing was conducted according to standard ISO 13061. Results from this study show that thinning treatments significantly affect the physical and mechanical properties of E. pellita. The study also found that the static modulus of elasticity (MOE) value may be predicted using the acoustic velocity approach, with R2 = 0.46, R2 = 0.60, and R2 = 0.53 on standing trees, billets, and wood slabs, respectively. The application of non-destructive tests in forest plantations can help the foresters assess the wood properties efficiently, and specific parameters can be measured on a tree stand without falling the tree. Besides, thinning at a moderate intensity also helped to enhance the mechanical properties and dynamic MOE value of the E. pellita wood.

  • Alwi, A., Meder, R., Japarudin, Y., Hamid, H. A., Sanusi, R., & Yusoff, K. H. M. (2021). Near-infrared spectroscopy of Eucalyptus pellita for foliar nutrients and the potential for real-time monitoring of trees in fertiliser trial plots. Journal of Near Infrared Spectroscopy, 29(3), 158-167. https://doi.org/10.1177/09670335211007971

  • American Society for Testing and Materials. (2023). D143. Standard Test Methods for Small Clear Specimens of Timber. ASTM International. https://www.astm.org/d0143-22.html

  • Antony, F., Schimleck, L. R., Jordan, L., Daniels, R. F., & Clark, A. (2012). Modeling the effect of initial planting density on a within-tree variation of stiffness in loblolly pine. Annals of Forest Science, 69(5), 641-650. https://doi.org/10.1007/s13595-011-0180-1

  • Auty, D., Achim, A., Macdonald, E., Cameron, A. D., & Gardiner, B. A. (2016). Models for predicting clear wood mechanical properties of Scots pine. Forest Science, 62(4), 403-413. https://doi.org/10.5849/forsci.15-092

  • Auty, D., & Achim, A. (2008). The relationship between standing tree acoustic assessment and timber quality in Scots pine and the practical implications for assessing timber quality from naturally regenerated stands. Forestry, 81(4), 475-487. https://doi.org/10.1093/forestry/cpn015

  • Ayanleye, S. (2020). Assessment of some wood properties by near infrared spectroscopy [Doctoral dissertation, University of British Columbia].

  • Baettig, R., Cornejo, J., & Guajardo, J. (2017). Evaluation of intra-ring wood density profiles using NIRS: comparison with the X-ray method. Annals of Forest Science, 74(1), 1-8. https://doi.org/10.1007/s13595-016-0597-7

  • Balasso, M., Hunt, M., Jacobs, A., & O'Reilly-Wapstra, J. (2021). Characterisation of wood quality of Eucalyptus nitens plantations and predictive models of density and stiffness with site and tree characteristics. Forest Ecology and Management, 491, 118992. https://doi.org/10.1016/j.foreco.2021.118992

  • Barotto, A. J., Monteoliva, S., Gyenge, J. E., Martinez Meier, A., Moreno, K., Tesón, N., & Fernández, M. E. (2017). Wood density and anatomy of three Eucalyptus species: Implications for hydraulic conductivity. Forest Systems, 26(1), e010. https://doi.org/10.5424/fs/2017261-10446

  • Bhandari, S. K., Veneklaas, E. J., McCaw, L., Mazanec, R., & Renton, M. (2022). Effect of thinning on growth and allometry of Eucalyptus diversicolor. Southern Forests: A Journal of Forest Science, 84(4), 298-310. https://doi.org/10.2989/20702620.2022.2155090

  • Bhandari, S. K., Veneklaas, E. J., McCaw, L., Mazanec, R., Whitford, K., & Renton, M. (2021). Effect of thinning and fertiliser on growth and allometry of Eucalyptus marginata. Forest Ecology and Management, 479, 118594. https://doi.org/10.1016/j.foreco.2020.118594

  • Binkley, D., Campoe, O. C., Alvares, C., Carneiro, R. L., Cegatta, Í., & Stape, J. L. (2017). The interactions of climate, spacing, and genetics on clonal Eucalyptus plantations across Brazil and Uruguay. Forest Ecology and Management, 405, 271-283. https://doi.org/10.1016/j.foreco.2017.09.050

  • Butler, M. A., Dahlen, J., Eberhardt, T. L., Montes, C., Antony, F., & Daniels, R. F. (2017). Acoustic evaluation of loblolly pine tree and lumber-length logs allows for segregation of lumber modulus of elasticity, not for modulus of rupture. Annals of Forest Science, 74(1), 1-15. https://doi.org/10.1007/s13595-016-0615-9

  • Candel-Pérez, D., Lo, Y. H., Blanco, J. A., Chiu, C. M., Camarero, J. J., González de Andrés, E., Imbert, J. B., & Castillo, F. J. (2018). Drought-induced changes in wood density are not prevented by thinning in Scots pine stands. Forests, 9(1), 4. https://doi.org/10.3390/f9010004

  • Carter, P., Briggs, D., Ross, R. J., & Wang, X. (2005). Acoustic testing to enhance western forest values and meet customer wood quality needs. In C. A. Harrington, & S. H. Schoenholtz (Eds.)., Productivity of western forests: A forest products focus (pp. 121-129). United States Department of Agriculture, Forest Service, Pacific Northwest Research StationGeneral Technical Report PNW; GTR-642.

  • Chen, Z. Q., Karlsson, B., Lundqvist, S. O., García Gil, M. R., Olsson, L., & Wu, H. X. (2015). Estimating solid wood properties using Pilodyn and acoustic velocity on standing trees of Norway spruce. Annals of Forest Science, 72(4), 499-508. https://doi.org/10.1007/s13595-015-0458-9

  • Coletta, V., Menguzzato, G., Pellicone, G., Veltri, A., & Marziliano, P. A. (2016). Effect of thinning on above-ground biomass accumulation in a Douglas-fir plantation in southern Italy. Journal of Forestry Research, 27, 1313-1320. https://doi.org/10.1007/s11676-016-0247-9

  • Derikvand, M., Kotlarewski, N., Lee, M., Jiao, H., & Nolan, G. (2019). Characterisation of physical and mechanical properties of unthinned and unpruned plantation-grown Eucalyptus nitens H. Deane & Maiden lumber. Forests, 10(2), 194. https://doi.org/10.3390/f10020194

  • de Moraes Gonçalves, J. L., Stape, J. L., Laclau, J. P., Smethurst, P., & Gava, J. L. (2004). Silvicultural effects on the productivity and wood quality of eucalypt plantations. Forest Ecology and Management, 193(1-2), 45-61. https://doi.org/10.1016/j.foreco.2004.01.022

  • Fundova, I., Funda, T., & Wu, H. X. (2019). Non-destructive assessment of wood stiffness in Scots pine (Pinus sylvestris L.) and its use in forest tree improvement. Forests, 10(6), 491. https://doi.org/10.3390/f10060491

  • Gao, S., Wang, X., Wiemann, M. C., Brashaw, B. K., Ross, R. J., & Wang, L. (2017). A critical analysis of methods for rapid and non-destructive determination of wood density in standing trees. Annals of Forest Science, 74(2), 1-13. https://doi.org/10.1007/s13595-017-0623-4

  • Gendvilas, V., Downes, G. M., Neyland, M., Hunt, M., Harrison, P. A., Jacobs, A., Williams, D. & O’Reilly-Wapstra, J. (2021). Thinning influences wood properties of plantation-grown Eucalyptus nitens at three sites in Tasmania. Forests, 12(10), 1304. https://doi.org/10.3390/f12101304

  • Hii, S. Y., Ha, K. S., Ngui, M. L., Ak Penguang, S., Duju, A., Teng, X. Y., & Meder, R. (2017). Assessment of plantation-grown Eucalyptus pellita in Borneo, Malaysia, for solid wood utilisation. Australian Forestry, 80(1), 26-33. https://doi.org/10.1080/00049158.2016.1272526

  • International Organization for Standardization. (2019). ISO 3129:2019. Wood – Sampling methods and general requirements for physical and mechanical testing of small clear wood specimens. https://www.iso.org/standard/74839.html

  • International Organization for Standardization. (2014). ISO 13061:2014. Physical and mechanical properties of wood – Test methods for small clear wood specimens (ISO 1306:2014). https://www.iso.org/standard/60063.html

  • Japarudin, Y., Meder, R., Lapammu, M., Alwi, A., & Brown, M. (2022). Non-destructive evaluation of strength and stiffness of Eucalyptus pellita. A comparison of near-infrared spectroscopy and acoustic wave velocity assessment. Journal of Near Infrared Spectroscopy, 30(5), 270-278. https://doi.org/10.1177/09670335221117301

  • Lahr, F. A., Nogueira, M. C., Araujo, V. A. D., Vasconcelos, J. S., & Christoforo, A. L. (2017). Physical-mechanical characterisation of Eucalyptus urophylla wood. Engenharia Agrícola, 37, 900-906. http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v37n5p900-906/2017

  • Legg, M., & Bradley, S. (2016). Measurement of stiffness of standing trees and felled logs using acoustics: A review. The Journal of the Acoustical Society of America, 139(2), 588-604. https://doi.org/10.1121/1.4940210

  • Listyanto, T., & Nichols, J. D. (2009). A review of relationships between wood quality and silvicultural practices. Jurnal Ilmu Kehutanan, 3(2), 116-126. https://doi.org/10.22146/jik.1513

  • Liu, F., Zhang, H., Wang, X., Jiang, F., Yu, W., & Ross, R. J. (2021). Acoustic wave propagation in Standing Trees-Part II. Effects of tree diameter and juvenile wood. Wood and Fiber Science, 53(2), 95-108. https://doi.org/10.22382/wfs-2021-12

  • Liu, C., Zhang, S. Y., Cloutier, A., & Rycabel, T. (2007). Modelling lumber bending stiffness and strength in natural black spruce stands using stand and tree characteristics. Forest Ecology and Management, 242(2-3), 648-655. https://doi.org/10.1016/j.foreco.2007.01.077

  • Marini, F., Manetti, M. C., Corona, P., Portoghesi, L., Vinciguerra, V., Tamantini, S., Kuzminsky, E., Zikeli, F., & Romagnoli, M. (2021). Influence of forest stand characteristics on physical, mechanical properties and chemistry of chestnut wood. Scientific Reports, 11(1), 1-10. https://doi.org/10.1038/s41598-020-80558-w

  • Nogueira, G. S., Marshall, P. L., Leite, H. G., & Campos, J. C. C. (2015). Thinning intensity and pruning impacts on Eucalyptus plantations in Brazil. International Journal of Forestry Research, 2015(1), 168390. https://doi.org/10.1155/2015/168390

  • Papandrea, S. F., Cataldo, M. F., Bernardi, B., Zimbalatti, G., & Proto, A. R. (2022). The predictive accuracy of Modulus of Elasticity (MOE) in the wood of standing trees and logs. Forests, 13(8), 1273. https://doi.org/10.3390/f13081273

  • Prasetyo, A., Aiso, H., Ishiguri, F., Wahyudi, I., Wijaya, I. P. G., Ohshima, J., & Yokota, S. (2017). Variations on growth characteristics and wood properties of three Eucalyptus species planted for pulpwood in Indonesia. Tropics, 26(2), 59-69. https://doi.org/10.3759/tropics.ms16-15

  • Proto, A. R., Macrì, G., Bernardini, V., Russo, D., & Zimbalatti, G. (2017). Acoustic evaluation of wood quality with a non-destructive method in standing trees: The first survey in Italy. iForest-Biogeosciences and Forestry, 10(4), 700. https://doi.org/10.3832/ifor2065-010

  • Raymond, C. A. (2002). Genetics of Eucalyptus wood properties. Annals of Forest Science, 59(5-6), 525-531. https://doi.org/10.1051/forest:2002037

  • Roux, J., & Wingfield, M. J. (2009). Ceratocystis species: Emerging pathogens of non-native plantation Eucalyptus and Acacia species. Southern Forests: A Journal of Forest Science, 71(2), 115-120. https://doi.org/10.2989/sf.2009.71.2.5.820

  • Russo, D., Marziliano, P. A., Macri, G., Proto, A. R., Zimbalatti, G., & Lombardi, F. (2019). Does thinning intensity affect wood quality? An analysis of Calabrian Pine in Southern Italy using a non-destructive acoustic method. Forests, 10(4), 303. https://doi.org/10.3390/f10040303

  • Schimleck, L., Dahlen, J., Apiolaza, L. A., Downes, G., Emms, G., Evans, R., Moore, J., Paques, L., Van den Bulke, J., & Wang, X. (2019). Non-destructive evaluation techniques and what they tell us about wood property variation. Forests, 10(9), 728. https://doi.org/10.3390/f10090728

  • Sharma, V., Yadav, J., Kumar, R., Tesarova, D., Ekielski, A., & Mishra, P. K. (2020). On the rapid and non-destructive approach for wood identification using ATR-FTIR spectroscopy and chemometric methods. Vibrational Spectroscopy, 110, 103097. https://doi.org/10.1016/j.vibspec.2020.103097

  • Todaro, L., & Macchioni, N. (2011). Wood properties of young Douglas-fir in Southern Italy: Results over a 12-year post-thinning period. European Journal of Forest Research, 130(2), 251-261. https://doi.org/10.1007/s10342-010-0425-9

  • Van Duong, D., & Schimleck, L. (2022). Prediction of static bending properties of Eucalyptus clones using stress wave measurements on standing trees, logs, and small clear specimens. Forests, 13(10), 1728. https://doi.org/10.3390/f13101728

  • Wang, X., Carter, P., Ross, R. J., & Brashaw, B. K. (2007). Acoustic assessment of wood quality of raw forest materials-a path to increased profitability. Forest Products Journal, 57(5), 6.

  • Wang, X., Ross, R. J., McClellan, M., Barbour, R. J., Erickson, J. R., Forsman, J. W., & McGinnis, G. D. (2000). Strength and stiffness assessment of standing trees using a non-destructive stress wave technique. United States, Department of Agriculture, Forest Service, Forest Products Laboratory.

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST(S)-0621-2024

Download Full Article PDF

Share this article

Recent Articles