PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 33 (1) Jan. 2025 / JST-5209-2024

 

Integration of Total Maximum Daily Load (TMDL) and Environmental Flow Assessment (EFA) Concepts as an Adaptive Approach to Pollutant Loading Management in Asia: A Review

Fasihah Mohd Yusof, Nor Rohaizah Jamil, Syahida Sapia’e, Frankie Marcus Ata and Nur Khaliesah Abdul Malik

Pertanika Journal of Science & Technology, Volume 33, Issue 1, January 2025

DOI: https://doi.org/10.47836/pjst.33.1.23

Keywords: Environmental Flow Assessment (EFA), modeling, pollutant load, Total Maximum Daily Load (TMDL), water quality

Published on: 23 January 2025

Water scarcity and pollution are escalating challenges in Asia, impacting ecological systems and human livelihoods. This paper reviews the integration of Total Maximum Daily Load (TMDL) and Environmental Flow Assessment (EFA) in water management to address the dual issues of water quality and quantity. TMDL focuses on regulating the number of pollutants entering water bodies to meet quality standards, while EFA ensures that enough water is available to support aquatic ecosystems. Their independent application, however, often leads to gaps—TMDL can overlook ecological needs, while EFA may neglect pollution control. The integration of these two frameworks offers a more holistic solution, especially in water-stressed regions like Southeast Asia, where moderate water availability is exacerbated by urbanization, industrialization, and agricultural runoff. Case studies from Malaysia, Indonesia, and China reveal the limitations of applying TMDL and EFA separately and underscore the necessity of addressing both ecological flow requirements and pollution limits. This paper identifies key pollutants such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), heavy metals, and total suspended solids (TSS), particularly in urban and semi-urban areas, and highlights the importance of tailoring strategies to the specific needs of different regions. By combining TMDL and EFA, policymakers can better manage pollutant loads, secure ecological health, and address Asia’s pressing water management issues. This review emphasizes the need for adaptable, integrated water management strategies that account for seasonal fluctuations, competing water demands, and regional water availability and pollution differences.

  • Abdullah. (2017). Integrated River Basin Management Report. Department of Irrigation and Drainage. https://www.water.gov.my/index.php/pages/view/708

    Abidin, M. Z., Kutty, A. A., Lihan, T., & Zakaria, N. A. (2018). Hydrological change effects on Sungai Langat water quality. Sains Malaysiana, 47(7), 1401–1411. https://doi.org/10.17576/jsm-2018-4707-07

    Adnan, M., Roslen, H., & Samsuri, S. (2022). The application of total maximum daily load (TMDL) approach in water quality assessment for the Batu Pahat River. In IOP Conference Series: Earth and Environmental Science (Vol. 1022, No. 1, p. 012074). IOP Publishing. https://doi.org/10.1088/1755-1315/1022/1/012074

    Akhter, S., Bhat, M. A., Ahmed, S., Siddiqi, W. A., Ahmad, S., & Shrimal, H. (2023). Profiling of antibiotic residues in surface water of River Yamuna stretch passing through Delhi, India. Water, 15(3), Article 527. https://doi.org/10.3390/w15030527

    Anees, M. T., Khan, M. M. A., Kadir, M. O. A., Abdelrahman, K., Eldosouky, A. M., Andráš, P., Yahaya, N. K. B. E. M., Johar, Z., Fnais, M. S., & Omar, F. M. (2022). A new scenario-based approach for water quality and environmental impact assessment due to mining activities. Water, 14(13), 1–17. https://doi.org/10.3390/w14132117

    Ariff, F. A. M., Wahid, M. A., Ghafar, B. H. A., & Ghosh, G. C. (2023). Risk quotient analysis and total maximum daily load estimation for Kedah River, Malaysia. In IOP Conference Series: Earth and Environmental Science (Vol. 1143, No. 1, p. 012013). IOP Publishing. https://doi.org/10.1088/1755-1315/1143/1/012013

    Arthington, A. H., Kennen, J. G., Stein, E. D., & Webb, J. A. (2018). Recent advances in environmental flows science and water management - Innovation in the Anthropocene. Freshwater Biology, 63(8), 1022–1034. https://doi.org/https://doi.org/10.1111/fwb.13108

    Asim, M., & Rao, K. N. (2021). Assessment of heavy metal pollution in Yamuna River, Delhi-NCR, using heavy metal pollution index and GIS. Environmental Monitoring and Assessment, 193(2), Article 103. https://doi.org/10.1007/s10661-021-08886-6

    Bello, N., Jamil, N. R., Looi, L. J., & Ng, K. Y. (2024). Pollutant load estimation and load reduction target (LRT) projection for total maximum daily load (TMD) allocation on tropical rivers. Environmental and Sustainability Indicators, 22, Article 100363. https://doi.org/10.1016/j.indic.2024.100363

    Bui, L. T., & Pham, H. T. H. (2023). Linking hydrological, hydraulic and water quality models for river water environmental capacity assessment. Science of the Total Environment, 857, Article 159490. https://doi.org/10.1016/j.scitotenv.2022.159490

    Burke, P. J., & Do, T. N. (2021). Greening Asia’s economic development. Asian Economic Policy Review, 16(1), 22–39. https://doi.org/https://doi.org/10.1111/aepr.12316

    Camacho, R. A., Zhang, Z., & Chao, X. (2019). Receiving water quality models for TMDL development and implementation. Journal of Hydrologic Engineering, 24(2), Article 04018063. https://doi.org/10.1061/(asce)he.1943-5584.0001723

    Chen, C. F., Tsai, L. Y., Fan, C. H., & Lin, J. Y. (2016). Using exceedance probability to determine total maximum daily loads for reservoir water quality management. Water, 8(11), Article 541. https://doi.org/10.3390/w8110541

    Chen, Q., Wang, Q., Li, Z., & Li, R. (2014). Uncertainty analyses on the calculation of water environmental capacity by an innovative holistic method and its application to the Dongjiang River. Journal of Environmental Sciences, 26(9), 1783–1790. https://doi.org/10.1016/j.jes.2014.06.025

    Cho, J. H., & Lee, J. H. (2020). Fuzzy optimization model for waste load allocation in a river with Total Maximum Daily Load (TMDL) planning. Water, 12(9), 1–12. https://doi.org/10.3390/W12092618

    Chowdhury, M. S. U., Othman, F., Jaafar, W. Z. W., Mood, N. C., & Adham, M. I. (2018). Assessment of pollution and improvement measure of water quality parameters using scenarios modeling for Sungai Selangor Basin. Sains Malaysiana, 47(3), 457–469. https://doi.org/10.17576/jsm-2018-4703-05

    DOE. (2020). Environmental Quality Report 2020. Department of Environment Malaysia.

    Dewata, I., & Adri, Z. (2018). Water quality assessment and determining the carrying capacity of pollution load Batang Kuranji River. In IOP Conference Series: Materials Science and Engineering (Vol. 335, No. 1, p. 012027). IOP Publishing. https://doi.org/10.1088/1757-899X/335/1/012027

    Djuwita, M. R., Hartono, D. M., Mursidik, S. S., & Soesilo, T. E. B. (2021). Pollution load allocation on water pollution control in the citarum river. Journal of Engineering and Technological Sciences, 53(1), 1–15. https://doi.org/10.5614/j.eng.technol.sci.2021.53.1.12

    Dom, N. M., Sulaiman, S., Kamal, N. A., Ibrahim, S. L., Ghani, N. A. A., & Ariffin, J. (2016). Sediment load analysis in Lake Chini. The Journal of Water Resources Management, 1(5), Article 2016.

    Dou, M., Ma, J. X., Li, G. Q., & Zuo, Q. T. (2015). Measurement and assessment of water resources carrying capacity in Henan Province, China. Water Science and Engineering, 8(2), 102–113. https://doi.org/10.1016/j.wse.2015.04.007

    Fan, C., Ko, C. H., & Wang, W. S. (2009). An innovative modeling approach using Qual2K and HEC-RAS integration to assess the impact of tidal effect on River Water quality simulation. Journal of Environmental Management, 90(5), 1824–1832. https://doi.org/10.1016/j.jenvman.2008.11.011

    Fang, X. B., Zhang, J. Y., Mei, C. X., & Wong, M. H. (2014). The assimilative capacity of Qiantang River watershed, China. Water and Environment Journal, 28(2), 192–202. https://doi.org/10.1111/wej.12024

    Firizqi, F., & Widyastuti, M. (2020). Total maximum daily loads of Beton Reservoir, Gunungkidul Regency, Indonesia during the rainy season. E3S Web of Conferences, 200, 1–8. https://doi.org/10.1051/e3sconf/202020001006

    Ge, Y., Li, X., Cai, X., Deng, X., Wu, F., Li, Z., & Luan, W. (2018). Converting UN sustainable development goals (SDGs) to decision-making objectives and implementation options at the river basin scale. Sustainability, 10(4), Article 1056. https://doi.org/10.3390/su10041056

    Godinho, F., Costa, S., Pinheiro, P., Reis, F., & Pinheiro, A. (2014). Integrated procedure for environmental flow assessment in rivers. Environmental Processes, 1(2), 137–147. https://doi.org/10.1007/s40710-014-0012-z

    Gorgoglione, A., Castro, A., Chreties, C., & Etcheverry, L. (2020). Overcoming data scarcity in earth science. In Data (Vol. 5, Issue 1). MDPI. https://doi.org/10.3390/data5010005

    Hall, R. K., Guiliano, D., Swanson, S., Philbin, M. J., Lin, J., Aron, J. L., Schafer, R. J., & Heggem, D. T. (2014). An ecological function and services approach to total maximum daily load (TMDL) prioritization. Environmental Monitoring and Assessment, 186(4), 2413–2433. https://doi.org/10.1007/s10661-013-3548-x

    Hoang, A. T., Tran, H. T. D., Tran, A. P., Nguyen, N. A., Tran, T. V., & Tran, C. B. (2023). Assessment model for water quality progression of Gia, Re, and Da Do River for drinking water purpose in Hai Phong City. Viet Nam Journal of Hydrometeorology, 14, 22–35. https://doi.org/10.36335/VNJHM.2023(14).22-35

    Huang, L., Du, H., Dang, Y., He, H. S., Wang, L., Na, R., Li, N., & Wu, Z. (2023). Observed and projected changes in wet and dry spells for the major river basins in East Asia. International Journal of Climatology, 43(12), 5369–5386. https://doi.org/https://doi.org/10.1002/joc.8151

    Indriyani, K., Hasibuan, H. S., & Gozan, M. (2020). Total maximum daily load of the Curug Sub-district Segment of the Cirarab River, Indonesia. E3S Web of Conferences, 202, 1–11. https://doi.org/10.1051/e3sconf/202020202010

    International River Foundation. (2007). The Brisbane Declaration. In 10th International River Symposium (pp. 3-6). Brisbane, Australia.

    Jiménez, A., Saikia, P., Giné, R., Avello, P., Leten, J., Lymer, B. L., Schneider, K., & Ward, R. (2020). Unpacking water governance: A framework for practitioners. Water, 12(3), Article 827. https://doi.org/10.3390/w12030827

    Kamal, N. A., Muhammad, N. S., & Abdullah, J. (2020). Scenario-based pollution discharge simulations and mapping using integrated QUAL2K-GIS. Environmental Pollution, 259, Article 113909. https://doi.org/10.1016/j.envpol.2020.113909

    Kang, M. S., Park, S. W., Lee, J. J., & Yoo, K. H. (2006). Applying SWAT for TMDL programs to a small watershed containing rice paddy fields. Agricultural Water Management, 79(1), 72-92. https://doi.org/10.1016/j.agwat.2005.02.015

    Kennen, J. G., Stein, E. D., & Webb, J. A. (2018). Evaluating and managing environmental water regimes in a water-scarce and uncertain future. Freshwater Biology, 63(8), 733–737. https://doi.org/10.1111/FWB.13104

    Khalid, R. M., Mokhtar, M., Jalil, F., Rahman, S. A., & Spray, C. (2018). Legal framing for achieving ‘good ecological status’ for Malaysian rivers: Are there lessons to be learned from the EU Water Framework Directive? Ecosystem Services, 29, 251–259. https://doi.org/https://doi.org/10.1016/j.ecoser.2017.06.015

    King, J., Brown, C., & Tharme, R. (2019). Contributing Paper Definition and Implementation of Instream Flows. World Commission on Dams.

    Kurniawan, B., Komarudin, M., & Safrudin. (2023). The development of an action plan for the Jeneberang River pollution control based on the calculation of the total maximum daily load. In IOP Conference Series: Earth and Environmental Science (Vol. 1201, No. 1, p. 012042). IOP Publishing. https://doi.org/10.1088/1755-1315/1201/1/012042

    Kwon, H., Jo, C., & Choi, S. (2023). Diffuse pollutant load predictions in areas that implement the total maximum daily load due to climate change. Environmental Technology & Innovation, 32, Article 103251. https://doi.org/10.1016/j.eti.2023.103251

    Lavorel, S., Locatelli, B., Colloff, M. J., & Bruley, E. (2020). Co-producing ecosystem services for adapting to climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1794), Article 20190119. https://doi.org/10.1098/rstb.2019.0119

    Lee, A., Cho, S., Park, M. J., & Kim, S. (2012). Determination of standard target water quality in the Nakdong River Basin for the total maximum daily load management system in Korea. KSCE Journal of Civil Engineering, 17, 309-319.

    Lee, I., Hwang, H., Lee, J., Yu, N., Yun, J., & Kim, H. (2017). Modeling approach to evaluation of environmental impacts on river water quality: A case study with Galing River, Kuantan, Pahang, Malaysia. Ecological Modelling, 353, 167–173. https://doi.org/10.1016/j.ecolmodel.2017.01.021

    Li, J., Li, T., Liu, S., & Shi, H. (2018). An efficient method for mapping high-resolution global river discharge based on the algorithms of drainage network extraction. Water, 10(4), Article 533. https://doi.org/10.3390/w10040533

    Li, Y., Qiu, R., Yang, Z., Li, C., & Yu, J. (2010). Parameter determination to calculate water environmental capacity in Zhangweinan Canal Sub-basin in China. Journal of Environmental Sciences, 22(6), 904–907. https://doi.org/10.1016/S1001-0742(09)60196-0

    Liu, Q., Liu, D., Zhang, Y., Wang, Y., & Xing, M. (2020). Study on spatial distribution of pollutants and total amount reduction in the Duliujian River (Tianjin, China). Water Science and Technology: Water Supply, 20(4), 1380–1395. https://doi.org/10.2166/ws.2020.054

    Liu, W. C., Liu, S. Y., Hsu, M. H., & Kuo, A. Y. (2005). Water quality modeling to determine minimum instream flow for fish survival in tidal rivers. Journal of Environmental Management, 76(4), 293–308. https://doi.org/10.1016/j.jenvman.2005.02.005

    Liu, X., Liu, W., Liu, L., Tang, Q., Liu, J., & Yang, H. (2021). Environmental flow requirements largely reshape global surface water scarcity assessment. Environmental Research Letters, 16(10), Article 104029. https://doi.org/10.1088/1748-9326/ac27cb

    Mangottiri, V., Nambi, I., & Govindarajan, S. K. (2011). Application of QUAL2k for assessing waste loading scenario in River Yamuna. International Journal of Advanced Engineering Technology, 2(2), 336-344. https://www.researchgate.net/publication/291161516

    Marzouni, M. B., Akhoundali, A. M., Moazed, H., Jaafarzadeh, N., Ahadian, J., Hasoonizadeh, H., & Akhoondali, A. (2014). Evaluation of Karun River Water quality scenarios using simulation model results. International Journal of Advanced Biological and Biomedical Research, 2(2), 339–358.

    Meynell, P. J., Metzger, M., & Stuart, N. (2021). Identifying ecosystem services for a framework of ecological importance for rivers in Southeast Asia. Water, 13(11), Article 1602. https://doi.org/10.3390/w13111602

    Mohamad, K. A., Othman, I. K., & Jamal, M. H. (2020). Assessment of water quality conditions in the Upper Johor River Basin. In IOP Conference Series: Earth and Environmental Science (Vol. 476, No. 1, p. 012133). IOP Publishing. https://doi.org/10.1088/1755-1315/476/1/012133

    Monfared., S. A. H., Darmian, M. D., Snyder, S. A., Azizyan, G., Pirzadeh, B., & Moghaddam, M. A. (2017). Water quality planning in rivers: Assimilative capacity and dilution flow. Bulletin of Environmental Contamination and Toxicology, 99(5), 531–541. https://doi.org/10.1007/s00128-017-2182-7

    Muoi, L. V., Srilert, C., Tri, V. P. D., & Van, T. P. (2022). Spatial and temporal variabilities of surface water and sediment pollution at the main tidal-influenced river in Ca Mau Peninsular, Vietnamese Mekong Delta. Journal of Hydrology: Regional Studies, 41, Article 101082. https://doi.org/10.1016/j.ejrh.2022.101082

    Novotny, V. (2004). Simplified databased total maximum daily loads, or the world is log-normal. Journal of Environmental Engineering, 130(6), 674-683.

    Nurtazin, S., Thevs, N., Iklasov, M., Graham, N., Salmurzauli, R., & Pueppke, S. (2019). Challenges to the sustainable use of water resources in the Ili River basin of Central Asia. In E3S Web of Conferences (Vol. 81, p. 01009). EDP Sciences. https://doi.org/10.1051/e3sconf/20198101009

    Osmi, S. A. C., Ishak, W. M. F. W., Kim, H., Azman, M. A., & Ramli, M. A. (2016). Development of total maximum daily load using water quality modelling as an approach for watershed management in Malaysia. International Journal of Environmental and Ecological Engineering, 10(10), 1013-1021.

    Outlook, W., & Management, W. E. (2012). WEPA Outlook on Water Environmental Management in Asia. Ministry of the Environment, Japan. https://wepa-db.net/wp-content/uploads/2022/12/2012_en_summary_all.pdf

    Park, J. H., Oh, S. Y., Ryu, J., Lee, J. K., & Shin, D. S. (2021). Methods on load estimation for the implementation assessment in the management of total maximum daily loads. Desalination and Water Treatment, 225, 37–42. https://doi.org/10.5004/dwt.2021.26957

    Ranjith, S., Shivapur, Anand. V., Kumar, P. S. K., Hiremath, Chandrashekarayya. G., & Dhungana, S. (2020). Water quality modelling qual 2KW for River Tungabhadra (India). International Journal of Recent Technology and Engineering, 9(1), 461–464. https://doi.org/10.35940/ijrte.a1614.059120

    Saddiqa, A., Batool, S., Gill, S. A., & Khan, A. J. (2022). Water Governance and Management in the 21st Century: A Case Study of Pakistan. Pakistan Journal of Humanities and Social Sciences, 10(1), 29–42. https://doi.org/10.52131/pjhss.2022.1001.0171

    Satoh, Y., Kahil, T., Byers, E., Burek, P., Fischer, G., Tramberend, S., Greve, P., Flörke, M., Eisner, S., Hanasaki, N., Magnuszewski, P., Nava, L. F., Cosgrove, W., Langan, S., & Wada, Y. (2017). Multi-model and multi-scenario assessments of Asian water futures: The Water Futures and Solutions (WFaS) initiative. Earth’s Future, 5(7), 823–852. https://doi.org/10.1002/2016EF000503

    Sedighkia, M., & Abdoli, A. (2024). A fish biodiversity protection based approach for assessing environmental flow regime in rivers. Journal of Cleaner Production, 449, Article 141834. https://doi.org/10.1016/j.jclepro.2024.141834

    Setiawan, A. D., Widyastuti, M., & Hadi, M. P. (2018). Water quality modeling for pollutant carrying capacity assessment using Qual2Kw in bedog river. Indonesian Journal of Geography, 50(1), 49–56. https://doi.org/10.22146/ijg.16429

    Shang, S. (2008). A multiple criteria decision-making approach to estimate minimum environmental flows based on wetted perimeter. River Research and Applications, 24(1), 54–67. https://doi.org/https://doi.org/10.1002/rra.1047

    Sim, L. M., Onishi, A., Gervais, O., & Chan, N. W. (2018). Comparative research on river basin management in the Sagami River Basin (Japan) and the Muda River Basin (Malaysia). Resources, 7(2), Article 33. https://doi.org/10.3390/resources7020033

    Song, C. M. (2021). Analysis of the effects of local regulations on the preservation of water resources using the ca-markov model. Sustainability, 13(10), Article 5652. https://doi.org/10.3390/su13105652

    Sun, D., Shi, M., Wei, J., & Chen, Z. (2023). Economic contribution and rebound effect of industrial water: The case of the Yangtze River Delta. Water Resources and Economics, 42, Article 100222. https://doi.org/https://doi.org/10.1016/j.wre.2023.100222

    Syahputra, B., Fajar, B., & Sudarno. (2022). Community Participation in River Basin Management. In R. L. Ray, D. G. Panagoulia, & N. S. Abeysingha (Eds.), River Basin Management (p. Ch. 12). IntechOpen. https://doi.org/10.5772/intechopen.105954

    Tang, X., Li, R., Han, D., & Scholz, M. (2020). Response of eutrophication development to variations in nutrients and hydrological regime: A case study in the Changjiang River (Yangtze) basin. Water, 12(6), 1–19. https://doi.org/10.3390/w12061634

    Theodoropoulos, C., Georgalas, S., Mamassis, N., Stamou, A., Rutschmann, P., & Skoulikidis, N. (2018). Comparing environmental flow scenarios from hydrological methods, legislation guidelines, and hydrodynamic habitat models downstream of the Marathon Dam (Attica, Greece). Ecohydrology, 11(8), Article e2019. https://doi.org/10.1002/eco.2019

    Todeschini, S., Papiri, S., & Sconfietti, R. (2011). Impact assessment of urban wet-weather sewer discharges on the Vernavola river (Northern Italy). Civil Engineering and Environmental Systems, 28(3), 209–229. https://doi.org/10.1080/10286608.2011.584341

    Tofani, A. S., & Hadi, M. P. (2020). Total maximum daily load of bod in urbanized Belik River, Yogyakarta. In IOP Conference Series: Earth and Environmental Science (Vol. 451, No. 1, p. 012078). IOP Publishing. https://doi.org/10.1088/1755-1315/451/1/012078

    Torrefranca, I. G., Emerito, R., Otadoy, S., & Tongco, A. F. (2021). χ-maps and hypsometric analysis for river basin management 1 and prioritization: The case of Bohol River Basins, Central Philippines. Research Square.

    Tran, C. N., Yossapol, C., Tantemsapya, N., Kosa, P., & Kongkhiaw, P. (2022). Water quality simulation and dissolved oxygen change scenarios in Lam Takhong River in Thailand. Journal of Sustainable Development of Energy, Water and Environment Systems, 10(1), 1–13. https://doi.org/10.13044/j.sdewes.d9.0389

    US Environmental Protection Agency. (2007). Options for Expressing Daily Loads in TMDLs. US Environmental Protection Agency. https://www.epa.gov/sites/default/files/2015-07/documents/2007_06_26_tmdl_draft_daily_loads_tech.pdf

    Wang, D., Jia, Y., Niu, C., Yan, X., & Hao, C. (2024). A multiple criteria decision-making approach for water allocation of environmental flows considering the value trade-offs - A case study of Fen River in China. Science of the Total Environment, 912, Article 169588. https://doi.org/10.1016/j.scitotenv.2023.169588

    Wang, F., & Lin, B. (2013). Modelling habitat suitability for fish in the fluvial and lacustrine regions of a new Eco-City. Ecological Modelling, 267, 115–126. https://doi.org/10.1016/j.ecolmodel.2013.07.024

    Wang, Y., Yang, J., & Chang, J. (2019). Development of a coupled quantity-quality-environment water allocation model applying the optimization-simulation method. Journal of Cleaner Production, 213, 944–955. https://doi.org/10.1016/j.jclepro.2018.12.065

    Wang, Z., Zou, R., Inteliway, B., Sci, E., & Liu, Y. (2014). Predicting lake water quality responses to load reduction: A three- dimensional modeling approach for total maximum daily load. International Journal of Environmental Science and Technology, 11, 423-436.https://doi.org/10.1007/s13762-013-0210-7

    Xin, Z., Ye, L., & Zhang, C. (2019). Application of export coefficient model and QUAL2K for water environmental management in a rural watershed. Sustainability, 11(21), Article 6022. https://doi.org/10.3390/su11216022

    Yan, Y., Guan, Q., Wang, M., Su, X., Wu, G., Chiang, P., & Cao, W. (2018). Assessment of nitrogen reduction by constructed wetland based on InVEST: A case study of the Jiulong River Watershed, China. Marine Pollution Bulletin, 133, 349–356. https://doi.org/10.1016/j.marpolbul.2018.05.050

    Zhang, H. X. (2012). Linking TMDL development with implementation using watershed modeling tools: Successful applications and future challenges. In World Environmental and Water Resources Congress 2012: Crossing Boundaries (pp. 3887-3893). American Society of Civil Engineers. https://doi.org/10.1061/9780784412312.390

    Zhang, S., Li, Y., Zhang, T., & Peng, Y. (2015). An integrated environmental decision support system for water pollution control based on TMDL - A case study in the Beiyun River watershed. Journal of Environmental Management, 156, 31–40. https://doi.org/10.1016/j.jenvman.2015.03.021

    Zhang, X., Luo, J., Zhang, X., & Xie, J. (2020). Dynamic simulation of river water environmental capacity based on the subsection summation model. Water Environment Research, 92(2), 278–290. https://doi.org/10.1002/wer.1242

    Zhang, Z., Zou, X., Zhang, C., & Sharifi, S. (2023). Has China’s river chief system improved the quality of water environment? Take the Yellow River Basin as an example. Polish Journal of Environmental Studies, 32(5), 4403–4416. https://doi.org/10.15244/pjoes/168105

    Zhao, L., Zhang, X., Liu, Y., He, B., Zhu, X., Zou, R., & Zhu, Y. (2012). Three-dimensional hydrodynamic and water quality model for TMDL development of Lake Fuxian, China. Journal of Environmental Sciences, 24(8), 1355–1363. https://doi.org/10.1016/S1001-0742(11)60967-4

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-5209-2024

Download Full Article PDF

Share this article

Related Articles