PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 32 (6) Oct. 2024 / JST-4843-2023

 

Prediction of Temperature Variability on Power Transmission Line Parameters using Intelligent Approaches

Ashfaq Ahmad, Iqra Javed, Changan Zhu, Muhammad Babar Rasheed, Muhammad Waqar Akram, Muhammad Wisal Khan, Umair Ghazanfar, Waseem Nazar, Syed Baqar Hussain and Amber Sultan

Pertanika Journal of Science & Technology, Volume 32, Issue 6, October 2024

DOI: https://doi.org/10.47836/pjst.32.6.05

Keywords: ElasticNet, line voltage drop, power losses, power transmission line parameters, support vector machine, temperature variation effects

Published on: 25 October 2024

Due to changes in meteorological factors, the instability in the power at the end of the transmission system demands considerable attention. The temperature of the transmission line varies, which has a significant impact on the line parameters. An accurate prediction of line parameters behaviour is necessary to ensure system reliability. The present study is a step towards predicting variations in line parameters with respect to temperature variation. In addition, power loss and voltage drop due to variations in resistance are also predicted. Support Vector Machine (SVM) and ElasticNet, a machine learning algorithm, predict line parameters such as resistance, inductance, capacitance, voltage drop, and power losses. Furthermore, different seasons-based SVM and ElasticNet models for these parameters are considered. Seasons-based models are divided into two types, namely, summer and winter. 220-Kilovolt transmission data and weather information are used as model inputs. Predicted results of transmission line parameters are described in the form of RMSE and MRE. Moreover, the performance results of SVM and ElasticNet are also compared to show better prediction results. The result shows that the minimum prediction error of line parameters are 0.0511, 0.301, 0.426, 0.913, and 0.1501 in RMSE and 4.212, 0.518, 2.888, 0.097, and 0.615 percentages in MRE. This research work may provide technical guidance to transmission line engineers on enhancing the performance of transmission systems.

  • Ahmad, A., Jin, Y., Zhu, C., Javed, I., & Akram, M. W. (2020). Electrical power and energy systems investigating tension in overhead high voltage power transmission line using fi nite element method. Electrical Power and Energy Systems, 114, Article 105418. https://doi.org/10.1016/j.ijepes.2019.105418

  • Ajenikoko, G., & Adeleke, B. S. (2017). Effect of temperature change on the resistance of transmission line losses in electrical power network. International Journal of Renewable Energy Technology Research, 6(1), 1–8.

  • Ali, S., & Smith, K. A. (2003, October 27-29). Automatic parameter selection for polynomial kernel. [Paper presentation]. Proceedings Fifth IEEE Workshop on Mobile Computing Systems and Applications, Las Vegas, USA. https://doi.org/10.1109/IRI.2003.1251420

  • Bendjabeur, A., Kouadri, A., & Mekhilef, S. (2020). Novel technique for transmission line parameters estimation using synchronised sampled data. IET Generation, Transmission and Distribution, 14(3), 506–515. https://doi.org/10.1049/iet-gtd.2019.0702

  • Bhavsar, H., & Ganatra, A. (2012). A comparative study of training algorithms for supervised machine learning. International Journal of Soft Computing and Engineering, 2(4), 74–81. https://doi.org/10.1.1.492.6088

  • Bockarjova, M., & Andersson, G. (2007, July 1-5). Transmission line conductor temperature impact on state estimation accuracy. [Paper presentation]. IEEE Lausanne Power Tech, Lausanne, Switzerland. https://doi.org/10.1109/PCT.2007.4538401

  • Brownlee, J. (2016). Master Machine Learning Algorithms. MachineLearningMastery

  • Campbell, R. J. (2012). Weather-related power outages and electric system resiliency (Report No. 7-5700). CRS Report. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.ourenergypolicy.org/wp-content/uploads/2016/02/R42696.pdf

  • Cecchi, V., Miu, K., Leger, A. S., & Nwankpa, C. (2011, July 24-28). Study of the impacts of ambient temperature variations along a transmission line using temperature-dependent line models. [Paper presentation]. IEEE Power and Energy Society General Meeting, Detroit, USA. https://doi.org/10.1109/PES.2011.6039110

  • Chakrabortty, A., Chow, J. H., & Salazar, A. (2009). Interarea model estimation for radial power system transfer paths with intermediate voltage control using synchronized phasor measurements. IEEE Transactions on Power Systems, 24(3), 1318-1326. https://doi.org/10.1109/TPWRS.2009.2022995

  • Changsong, C., Shaxu, D., & Jinjun, Y. (2009). Design of photovoltaic array power forecasting model based on neutral network. Transactions of China Electrotechnical Society, 24(9), 153–158. https://doi.org/10.19595/j.cnki.1000-6753.tces.2009.09.023

  • Chang, C. C., & Lin, C. J. (2002). Training v-support vector regression: Theory and algorithms. Neural Computation, 14(8), 1959–1977. https://doi.org/10.1162/089976602760128081

  • Chang, C. C., & Lin, C. J. (2011). LIBSVM: A Library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3), Article 27. https://doi.org/10.1145/1961189.1961199

  • Chavan, G., Weiss, M., Chakrabortty, A., Bhattacharya, S., Salazar, A., & Ashrafi, F. H. (2017). Identification and predictive analysis of a multi-area WECC power system model using synchrophasors. IEEE Transactions on Smart Grid, 8(4), 1977–1986. https://doi.org/10.1109/TSG.2016.2531637

  • Diao, R., Vittal, V., & Logic, N. (2010). Design of a real-time security assessment tool for situational awareness enhancement in modern power systems. IEEE Transactions on Power Systems, 25(2), 957–965. https://doi.org/10.1109/TPWRS.2009.2035507

  • Du, Y., & Liao, Y. (2012). On-line estimation of transmission line parameters, temperature and sag using PMU measurements. Electric Power Systems Research, 93, 39–45. https://doi.org/10.1016/j.epsr.2012.07.007

  • Dutta, R., Member, S., Patel, V., Chakrabarti, S., Member, S., Sharma, A., Das, R. K., & Mondal, S. (2020). Parameter estimation of distribution lines using SCADA measurements. IEEE Transactions on Instrumentation and Measurement, 70 Article 9000411. https://doi.org/10.1109/TIM.2020.3026116

  • Fan, L. (2015, July 26-30). Least squares estimation and kalman filter based dynamic state and parameter estimation. [Paper presentation]. IEEE Power & Energy Society General Meeting, Denver, USA.

  • Farzaneh, M., Farokhi, S., & Chisholm, W. A. (2013). Electrical design of overhead power transmission lines. McGraw-Hill Education.

  • Fu, J., Morrow, D. J., Abdelkader, S., & Fox, B. (2011, September 5-8). Impact of dynamic line rating on power systems. [Paper presentation]. International Universities’ Power Engineering Conference (UPEC), Soest, Germany.

  • Géron, A. (2017). Hands-on machine learning with Scikit-learn and TensorFlow. O’Reilly Media.

  • Ghiasi, S. M. S., Abedi, M., & Hosseinian, S. H. (2019). Mutually coupled transmission line parameter estimation and voltage profile calculation using one terminal data sampling and virtual black-box. IEEE Access, 7, 106805–106812. https://doi.org/10.1109/ACCESS.2019.2901813

  • House, H. E., & Tuttle, P. D. (1958). Current-carrying capacity of ACSR. Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, 77(3), 1169-1173. https://doi.org/10.1109/AIEEPAS.1958.4500119

  • Huang, T. M., Kecman, V., & Kopriva, I. (2006). Kernel based algorithms for mining huge data sets. Springer.

  • IEEE Std 738 - 2006. (2007). Standard for Calculating the Current-Temperature of Bare Overhead Conductors. IEEE. https://doi.org/10.1109/IEEESTD.2007.301349

  • Indulkar, C. S., & Ramalingam, K. (2008). Estimation of transmission line parameters from measurements. International Journal of Electrical Power & Energy Systems, 30(5), 337–342. https://doi.org/10.1016/j.ijepes.2007.08.003

  • Kirschen, D., Allan, R., & Strbac, G. (1997). Contributions of individual generators to loads and flows. IEEE Transactions on power systems, 12(1), 52-60. https://doi.org/10.1109/59.574923

  • Mellit, A., & Pavan, A. M. (2010). A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy. Solar Energy, 84(5), 807–821. https://doi.org/10.1016/j.solener.2010.02.006

  • Morteza, A., Sadipour, M., Fard, R. S., Taheri, S., & Ahmadi, A. (2023). A dagging-based deep learning framework for transmission line flexibility assessment. IET Renewable Power Generation, 17(5), 1092–1105. https://doi.org/10.1049/rpg2.12663

  • Nedic, D. P., Dobson, I., Kirschen, D. S., Carreras, B. A., & Lynch, V. E. (2006). Criticality in a cascading failure blackout model. International Journal of Electrical Power and Energy Systems, 28(9), 627–633. https://doi.org/10.1016/j.ijepes.2006.03.006

  • Rashid, M. H., Rashid, M. H., & Rashid, M. H. (2005). SPICE for power electronics and electric power. CRC Press. https://doi.org/10.1201/9781420026429

  • Reddy, B. S., & Chatterjee, D. (2016). Performance evaluation of high temperature high current conductors. IEEE Transactions on Dielectrics and Electrical Insulation, 23(3), 1570–1579. https://doi.org/10.1109/TDEI.2016.005529

  • Scholkopf, B., Smola, A. J., Williamson, R. C., & Bartlett, P. L. (2000). New support vector algorithms. Neural Computation, 12(5), 1207–1245. https://doi.org/10.1162/089976600300015565

  • Steidl, G., Didas, S., & Neumann, J. (2005). Relations between higher order TV regularization and support vector regression. In R. Kimmel, N. A. Sochen & J. Weickert (Eds.) Lecture Notes in Computer Science (pp. 515–527). Springer. https://doi.org/10.1007/11408031_44

  • Vapnik, V. N. (1999). The nature of statistical learning theory. Springer.

  • Wang, Y., Mo, Y., Wang, M., Zhou, X., Liang, L., & Zhang, P. (2018). Impact of conductor temperature time-space variation on the power system operational state. Energies, 11(4), Article 760. https://doi.org/10.3390/en11040760

  • Wei, Y., & Gao, X. (2021). Transmission line galloping prediction based on GA-BP-SVM combined method. IEEE Access, 9, 107680–107687. https://doi.org/10.1109/ACCESS.2021.3100345

  • Yan, Z., Wang, Y., & Liang, L. (2017). Analysis on ampacity of overhead transmission lines being operated. Journal of Information Processing Systems, 13(5), 1358–1371. https://doi.org/10.3745/JIPS.04.0044

  • Yao, R., Huang, S., Sun, K., Liu, F., Zhang, X., & Mei, S. (2016). A multi-timescale quasi-dynamic model for simulation of cascading outages. IEEE Transactions on Power Systems, 31(4), 3189–3201. https://doi.org/10.1109/TPWRS.2015.2466116