e-ISSN 2231-8526
ISSN 0128-7680
Muinat Olanike Kazeem, Sahar Abbasiliasi, Tan Joo Shun, Azhari Samsu Baharuddin and Nor’ Aini Abdul Rahman
Pertanika Journal of Science & Technology, Volume 33, Issue 1, January 2025
DOI: https://doi.org/10.47836/pjst.33.1.01
Keywords: Aqueous two-phase system, Bacillus licheniformis 2D55, carboxymethyl cellulase, enzyme, partial purification, polyethene glycol
Published on: 23 January 2025
This study uses an aqueous two-phase system developed from a polymer and salt to purify a thermostable carboxymethyl cellulase (CMCase) produced by thermophilic Bacillus licheniformis 2D55. The effects of system parameters, such as polyethene glycol (PEG) molar mass, salt concentration, crude load, NaCl concentration and pH on partitioning and recovery efficiency, are evaluated. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) is used to determine the purity of the CMCase. The enzyme is successfully purified, achieving a 10.9-fold purification and 86.62% yield. The maximum purification condition is achieved in ATPS comprising 20.5% PEG 8000/15% sodium citrate, with a crude load of 17% (w/w), NaCl of 1.0% (w/w) and pH at 7.0. Under these conditions, a partition co-efficient of 0.21 is observed, indicating that CMCase preferentially partitions to the bottom phase. These results demonstrate the potential of ATPS for the purification of thermostable CMCase from the fermentation broth of thermophilic Bacillus licheniformis 2D55.
Abbasiliasi, S., Tan, J. S., Ibrahim, T. A. T., Kadkhodaei, S., Ng, H. S., Vakhshiteh, F., Ajdari, Z., Mustafa, S., Ling, T. C., Rahim, R. A., & Ariff, A. B. (2014). Primary recovery of a bacteriocin-like inhibitory substance derived from Pediococcus acidilactici Kp10 by an aqueous two-phase system. Food Chemistry, 151, 93-100. https://dx.doi.org/10.1016/j.foodchem.2013.11.019
Abedi, G., Talebpour, Z., Aliahmadi, A., & Mashhadi, I. S. (2022). Identification of industrial detergent enzymes by SDS-PAGE and MALDI-TOF mass spectrometry. New Journal of Chemistry, 46(8), 3939-3947. https://doi.org/ 10.1039/D1NJ05227F
Albuquerque, K. K., Albuquerque, W. W., Costa, R. M., Batista, J. M. S., Marques, D. A., Bezerra, R. P., Herculano, P. N., & Porto, A. L. F. (2020). Biotechnological potential of a novel tannase-acyl hydrolase from Aspergillus sydowii using waste coir residue: Aqueous two-phase system and chromatographic techniques. Biocatalysis and Agricultural Biotechnology, 23, Article 101453. https://doi.org/10.1016/j.bcab.2019.101453
Amaral, Y. M. S., Silva, O.S. D., Oliveira, R. L. D., & Porto, T. S. (2020). Production, extraction, and thermodynamics protease partitioning from Aspergillus tamarii Kita UCP1279 using PEG/sodium citrate aqueous two-phase systems. Preparative Biochemistry & Biotechnology, 50(6), 619-626. http://doi.org/10.1080/10826068.2020.1721535
Amid, M., Manap, Y., & Zohdi, N. K. (2014). A novel aqueous two phase system composed of a thermo-separating polymer and an organic solvent for purification of thermo-acidic amylase enzyme from red pitaya (Hylocereus polyrhizus) peel. Molecules, 19(5), 6635-6650 https://doi.org/10.3390/molecules19056635
Anvari, M. (2015). Extraction of lipase from Rhizopus microsporus fermentation culture by aqueous two-phase partitioning. Biotechnology & Biotechnological Equipment, 29(4), 723-731. https://doi.org/10.1080/13102818.2015.1042406
Aziz, N. F. H. A., Abbasiliasi, S., Ng, H. S., Phapugrangkul, P., Bakar, M. H. A., Tam, Y. J., & Tan, J. S. (2017). Purification of β-mannanase derived from Bacillus subtilis ATCC 11774 using ionic liquid as adjuvant in aqueous two-phase system. Journal of Chromatography B, 1055, 104-112. https://doi.org/10.1016/j.jchromb.2017.04.029
Banerjee, S., Maiti, T. K., & Roy, R. N. (2020). Production, purification, and characterization of cellulase from Acinetobacter junii GAC 16.2, a novel cellulolytic gut isolate of Gryllotalpa africana, and its effects on cotton fiber and sawdust. Annals of Microbiology, 70, Article 28. https://doi.org/10.1186/s13213-020-01569-6
Bettache, A., Copinet, E., Azzouz, Z., Boucherba, N., Bouiche, C., Hamma, S., Maibeche, R., Duchiron, F., & Benallaoau, S. (2021). Purification and characterization of an endoglucanase produced from Streptomyces sp. strain bpng23. Journal of Microbiology, Biotechnology and Food Sciences, 10(2) 284-288. https//doi.org/10.15414/jmbfs.2020.10.2.284-288
Chow, Y. H., Yap, Y. J., Tan, C. P., Anuar, M. S., Tejo, B. A., Show, P. L., Ariff, A. B., Ng, E. P., & Ling, T. C. (2015). Characterization of bovine serum albumin partitioning behaviors in polymer-salt aqueous two-phase systems. Journal of Bioscience and Bioengineering, 120(1), 85-90. https://doi.org/10.1016/j.jbiosc.2014.11.021
Co, R., & Hug, L. A. (2020). A need for improved cellulase identification from metagenomic sequence data. Applied and Environmental Microbiology, 87(1), Article e01928-20. https://doi.org/ 10.1128/AEM.01928-20
González-González, M., Picó, G., Lima, Á. S., Mussagy, C. U., Pereira, J. F. B., Fernandez-Lahore, H. M., Asenjo, J. A., & Palomares, M. R. (2022). Aqueous two-phase systems in Latin America: Perspective and future trends. Journal of Chemical Technology & Biotechnology, 97(6), 1353-1362. https://doi.org/10.1002/jctb.6890
González‐Valdez, J., Cueto, L. F., Benavides, J., & Rito‐Palomares, M. (2011). Potential application of aqueous two‐phase systems for the fractionation of RNase A and α‐Lactalbumin from their PEGylated conjugates. Journal of Chemical Technology & Biotechnology, 86(1), 26-33. https://doi.org/10.1002/jctb.2507
Hamta, A., & Dehghani, M. R. (2017). Application of polyethylene glycol based aqueous two-phase systems for extraction of heavy metals. Journal of Molecular Liquids, 231, 20-24. https://doi.org/10.1016/j.molliq.2017.01.084
Harnvoravongchai, P., Singwisut, R., Ounjai, P., Aroonnual, A., Kosiyachinda, P., Janvilisri, T., & Chankhamhaengdecha, S. (2020). Isolation and characterization of thermophilic cellulose and hemicellulose degrading bacterium, Thermoanaerobacterium sp. R63 from tropical dry deciduous forest soil. Plos One, 15(7), Article e0236518. https//:doi.org/10.1371/journal.pone.0236518
Herculano, P. N,, Porto, T. S., Maciel, M. H., Moreira, K. A., Souza-Motta, C. M., & Porto, A. L. (2012). Partitioning and purification of the cellulolytic complex produced by Aspergillus japonicus URM5620 using PEG–citrate in an aqueous two-phase system. Fluid Phase Equilibria, 335, 8-13. https://doi.org/10.1016/j.fluid.2012.08.008
Herculano, P. N., Moreira, K. A., Bezerra, R. P., Porto, T. S., Souza-Motta, C. M. D., & Porto, A. L. F. (2016). Potential application of waste from castor bean (Ricinus communis L.) for production for xylanase of interest in the industry. 3 Biotech, 6(2), Article 144. http://doi.org/10.1007/s13205-016-0463-1
Ho, S. L., Lan, J. C. W., Tan, J. S., Yim, H. S., & Ng, H. S. (2017). Aqueous biphasic system for the partial purification of Bacillus subtilis carboxymethyl cellulase. Process Biochemistry, 58, 276-281. https://doi.org/10.1016/j.procbio.2017.04.029
Hoffman, S. M., Alvarez, M., Alfassi, G., Rein, D. M., Garcia-Echauri, S., Cohen, Y., & Avalos, J. L. (2021). Cellulosic biofuel production using emulsified simultaneous saccharification and fermentation (eSSF) with conventional and thermotolerant yeasts. Biotechnology for Biofuels, 14, Article 157. https://doi.org/ 10.1186/s13068-021-02008-7
Ilari, A., Fiorillo, A., Angelaccio, S., Florio, R., Chiaraluce, R., Oost, J. V. D., & Consalvi, V. (2009). Crystal structure of a family 16 endoglucanase from the hyperthermophile Pyrococcus furiosus–structural basis of substrate recognition. The FEBS Journal, 276(4), 1048-1058. https://doi.org/10.1111/j.1742-4658.2008.06848.x
Iqbal, M., Tao, Y., Xie, S., Zhu, Y., Chen, D., Wang, X., Huang, L., Peng, B., Sattar, A., Shabir, M. A. B., Hussain, H, I., Ahmed, S., & Yuan, Z. (2016). Aqueous two-phase system (ATPS): An overview and advances in its applications. Biological Procedures Online, 18, Article 18. https://doi.org.10.1186/s12575-016-0048-8
Júnior, S. D. D. O., Padilha, C. E. D. A., Asevedo, E. A. D., Macedo, G. R. D., & Santos, E. S. D. (2020). Recovery and purification of cellulolytic enzymes from Aspergillus fumigatus CCT 7873 using an aqueous two-phase micellar system. Annals of Microbiology, 70, Article 23. https://doi.org/10.1186/s13213-020-01573-w
Karkaş, T., & Önal, S. (2012). Characteristics of invertase partitioned in poly (ethylene glycol)/magnesium sulfate aqueous two-phase system. Biochemical Engineering Journal, 60, 142-150. doi: https://doi.org/10.1016/j.bej.2011.11.005
Kazeem, M., Ajijolakewu, K., & Rahman, N. A. (2021). Cellulase production by co-culture of Bacillus licheniformis and B. paralicheniformis over monocultures on microcrystalline cellulose and chicken manure-supplemented rice bran media. BioResources, 16(4), Article 6850. https://doi.org/10.15376/biores.16.4.6850-6869
Kazeem, M. O., Shah, U. K. M., & Baharuddin, A. S. (2016). Enhanced cellulase production by a novel thermophilic Bacillus licheniformis 2D55: Characterization and application in lignocellulosic saccharification. BioResources, 11(2), 5404-5423. https://doi.org/10.15376biores/11.2.5404-5423
Kazeem, M. O., Shah, U. K. M., Baharuddin, A. S., & AbdulRahman, N. A. (2017). Prospecting agro-waste cocktail: Supplementation for cellulase production by a newly isolated thermophilic B. licheniformis 2D55. Applied Biochemistry and Biotechnology, 182(4) 1318-1340. https://doi.org/10.1007/s12010-017-2401-z
Ketnawa, S., Rawdkuen, S., & Chaiwut, P. (2010). Two phase partitioning and collagen hydrolysis of bromelain from pineapple peel Nang Lae cultivar. Biochemical Engineering Journal, 52(2), 205-211. https://doi.org/10.1016/j.bej.2010.08.012
Kumar, V. A., Kurup, R. S. C., Snishamol, C., & Prabhu, G. N. (2019). Role of cellulases in food, feed, and beverage industries. In B. Parameswaran, S. Varjani & S. Raveendran (Eds.), Energy, Environment, and Sustainability (pp. 323-324). Springer. https://doi.org/10.1007/978-981-13-3263-0_17.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685. https://doi.org/10.1038/227680a0
Liu, Y., Guo, H., Gu, J., & Qin, W. (2019). Optimize purification of a cellulase from Bacillus velezensis A4 by aqueous two-phase system (ATPS) using response surface methodology. Process Biochemistry, 87, 196-203. https://doi.org/10.1016/j.procbio.2019.08.017
Ma, C., Gerhard, E., Lu, D., & Yang, J. (2018). Citrate chemistry and biology for biomaterials design. Biomaterials, 178, 383-400. https://doi.org/10.1016/j.biomaterials.2018.05.003
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428.
Moteshafi, H., Jabbari, L., & Hashemi, M. (2022). Performance of Bacillus subtilis D3d xylanase separated through optimized aqueous two-phase system in bio-bleaching of sugar beet pulp. Process Safety and Environmental Protection, 159, 749-756. https://doi.org/10.1016/j.psep.2022.01.030
Nagaraja, V. H., & Iyyaswami, R. (2015). Aqueous two phase partitioning of fish proteins: Partitioning studies and ATPS evaluation. Journal of Food Science and Technology, 52(6), 3539-3548. https://doi.org/10.1007/s13197-014-1425-4
Ng, H. S., Tan, C. P., Chen, S. K., Mokhtar, M. N., Ariff, A., & Ling, T. C. (2011). Primary capture of cyclodextrin glycosyltransferase derived from Bacillus cereus by aqueous two phase system. Separation and Purification Technology, 81(3), 318-324. https://doi.org/10.1016/j.seppur.2011.07.039Get rights and content
Olukunle, O. F., Ayodeji, A. O., & Akinloye, P. O. (2021). Carboxymethyl cellulase (CMCase) from UV-irradiation mutated Bacillus cereus FOA-2 cultivated on plantain (Musa parasidiaca) stalk-based medium: Production, purification and characterization. Scientific African, 11, Article e00691. https://doi.org/10.1016/j.sciaf.2020.e00691
Pham, V. H. T., Kim, J., Shim, J., Chang, S., & Chung, W. (2022). Coconut mesocarp-based lignocellulosic waste as a substrate for cellulase production from high promising multienzyme-producing Bacillus amyloliquefaciens FW2 without pretreatments. Microorganisms, 10(2), Article 327. https://doi.org/10.3390/microorganisms10020327
Porto, C. S., Porto, T. S., Nascimento, K. S., Teixeira, E. H., Cavada, B. S., Lima-Filho, J. L., & Porto, A. L. (2011). Partition of lectin from Canavalia grandiflora Benth in aqueous two-phase systems using factorial design. Biochemical Engeneering Journal, 53(2), 165-171. doi: https://doi.org/10.1016/j.bej.2010.10.006
Ramesh, V., & Murty, V. R. (2015). Partitioning of thermostable glucoamylase in polyethyleneglycol/salt aqueous two-phase system. Bioresources and Bioprocessing, 2, Article 25. https://doi.org/10.1186/s40643-015-0056-6
Ratanapongleka, K. (2010). Recovery of biological products in aqueous two phase systems. International Journal of Chemical Engineering and Applications, 1(2), 191-198. http://doi.org/10.7763/IJCEA.2010.V1.33
Remli, N. A. M., Shah, U. K. M., Arif, A., Yusof, M. T., & Heng, J. L. S. (2018). Purification and properties of polygalacturonase associated with the infection process of Colletotrichum truncatum CP2 in chilli. International Journal of Environmental and Agriculture Research, 4(8), 1-9.
Saddique, H., Aasim, M., Nawab, S., Bibi, N. S., Muhammad, N., & Qasim, M. (2020). Aqueous two-phase systems for the isolation and partial purification of lipases from soil bacteria. Iranian Journal of Chemistry and Chemical Engineering, 39(6), 281-292. https://doi.org/ 10.30492/ijcce.2019.36708
Sadida, F. F., & Manchur, M. (2021). Production and optimization of cellulase activity of thermomonospora viridis isolated from rice straw. Bangladesh Journal of Botany, 50(2), 395-404. https://doi.org/10.3329/bjb.v50i2.54097
Selzer, K., Hassen, A., Akanmu, A., & Salem, A. (2021). Digestibility and rumen fermentation of a high forage diet pre-treated with a mixture of cellulase and xylanase enzymes. South African Journal of Animal Science, 51(3), 399-406. https://doi.org/10.4314/sajas.v5113.14
Settu, S., Velmurugan, P., Jonnalagadda, R., & Nair, B. (2015). Extraction of bovine serum albumin using aqueous two-phase poly (ethylene glycol)–poly (acrylic acid) system. Journal of Scientific and Industril Research, 74(6), 348-353.
Shankar, T., Sankaralingam, S., Balachandran, C., Chinnathambi, A., Nasif, O., Ali Alharbi, S., Park, S., & Baskar, K. (2021). Purification and characterization of carboxymethylcellulase from Bacillus pumilus EWBCM1 isolated from earthworm gut (Eudrilus eugeniae). Journal of King Saud University - Science, 33(1), Article 101261. https://doi.org/10.1016/j.jksus.2020.101261
Shi, S., Tian, L., Nasir, F., Bahadur, A., Batool, A., Luo, S., Yang, F., Wang, Z., & Tian, C. (2019). Response of microbial communities and enzyme activities to amendments in saline-alkaline soils. Applied Soil Ecology, 135, 16-24. https://doi.org/10.1016/j.apsoil.2018.11.003
Singla, M., & Sit, N. (2023). Theoretical aspects and applications of aqueous two-phase systems. Chemical Bioengeneering Reviews, 10(1), 65-80. https://doi.org/10.1002/cben.202200026
Soares, P. A. G., Nascimento, C. O., Porto, T. S., Correia, M. T. S., Porto, A. L. F., & Carneiro-da-Cunha, M. G. (2011). Purification of a lectin from Canavalia ensiformis using PEG–citrate aqueous two-phase system. Journal of Chromatography B, 879(5), 457-460. https://doi.org/10.1016/j.jchromb.2010.12.030
Sofijan, H., Shun, T. J., Abbasiliasi, S., Mustafa, S., Puspaningsih, N. T., Kadkhodaei, S., & Ariff, A. B. (2017). Recovery and partial purification of thermophilic β-xylosidase derived from recombinant Bacillus megaterium MS941 by aqueous two-phase system. Separation Science and Technology, 52(5), 834-842. https://doi.org/10.1080/01496395.2016.1268159
Sukohidayat, N. H. E., Zarei, M., Baharin, B. S., & Manap, M. Y. (2018). Purification and characterization of lipase produced by Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 using an aqueous two-phase system (ATPS) composed of triton X-100 and maltitol. Molecules, 23(7), Article 1800. https://doi.org 10.3390/molecules23071800
Torosyan, H., & Shoichet, B. K. (2019). Protein stability effects in aggregate-based enzyme inhibition. Journal of Medical Chemistry, 62(21), 9593-9599. https://doi.org/10.1021/acs.jmedchem.9b01019
Torres-Bautista, A., Torres-Acosta, M. A., & González-Valdez, J. (2022). Characterization and optimization of polymer-polymer aqueous two-phase systems for the isolation and purification of CaCo2 cell-derived exosomes. PlosOne, 17(9), Article e0273243. https://doi.org/10.1371/journal.pone.0273243
Ulucay, O., Gormez, A., & Ozic, C. (2022). Identification, characterization and hydrolase producing performance of thermophilic bacteria: geothermal hot springs in the Eastern and Southeastern Anatolia Regions of Turkey. Antonie Van Leeuwenhoek, 115(2), 253-270. https://doi.org/10.1007/s10482-021-01678-5
Vajpayee, M., Dave, H., Singh, M., & Ledwani, L. (2022). Cellulase enzyme based wet-pretreatment of lotus fabric to improve antimicrobial finishing with A. indica extract and enhance natural dyeing: Sustainable approach for textile finishing. ChemistrySelect, 7(25), Aticle e202200382. https://doi.org/10.1002/slct.202200382
Wang, Y., Wang, S., & Liu, L. (2022). Recovery of natural active molecules using aqueous two-phase systems comprising of ionic liquids/deep eutectic solvents. Green Chemical Engineering, 3(1), 5-14. https://doi.org/10.1016/j.gce.2021.07.007
Wood, T. M., & Bhat, K. M. (1988). Methods for measuring cellulase activities. Methods in Enzymology, 160, 87-112. https://doi.org/10.1016/0076-6879(88)60109-1
Yin, L. J., Lin, H. H., & Xiao, Z. R. (2010). Purification and characterization of a cellulase from Bacillus subtilis YJ1. Journal of Marine Science and Technology, 18(3), 466-471. https://doi.org/ 10.51400/2709-6998.1895
ISSN 0128-7680
e-ISSN 2231-8526