PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 31 (4) Jul. 2023 / JST-3881-2022

 

Correlation of Stromelysin-1 and Tissue Inhibitor of Metalloproteinase-1 with Lipid Profile and Atherogenic Indices in End-Stage Renal Disease Patients: A Neural Network Study

Habiba Khdair Abdalsada, Hadi Hassan Hadi, Abbas F. Almulla, Asawer Hassan Najm, Ameer Al-Isa and Hussein Kadhem Al-Hakeim

Pertanika Journal of Science & Technology, Volume 31, Issue 4, July 2023

DOI: https://doi.org/10.47836/pjst.31.4.27

Keywords: Cardiovascular disease, ESRD, lipid profile, Stromelysin-.1TIMP1

Published on: 3 July 2023

End-stage renal disease (ESRD) patients are prone to cardiovascular disease (CVD). The search for a biomarker that determines patients at great risk of CVD is still a hot topic of study. In the present study, stromelysin-1 and its inhibitor (TIMP1), in addition to atherogenic indices, were studied in ESRD patients. We assessed stromelysin-1, TIMP1, and lipid profile parameters in the serum of 60 ESRD patients and 30 healthy controls. A neural network study was conducted to determine the best factors for predicting ESRD patients more susceptible to developing CVD using the cut-off value of the atherogenic index of plasma (AIP) >0.24. ESRD patients have dyslipidemia, high atherogenic indices, and elevated levels of stromelysin-1 and TIMP1. There is a correlation between the rise in stromelysin-1 and its inhibitor and several atherogenic indices and lipids in those patients. The neural network results indicated that the area under the curve predicting CVD, using the measured eight parameters, was 0.833, with 80 % sensitivity and 100% specificity. The relative importance of the top four most effective input variables that represent the most important determinants for the prediction of high risk of CVD stromelysin-1 (100%), followed by eGFR (77.9%), TIMP1 (66.0%), and TIMP1/stromelysin-1 (30.7%). ESRD patients have dyslipidemia and are prone to CVD, and stromelysin-1 is the best parameter for predicting CVD in ESRD patients.

  • Alge-Priglinger, C. S., Kreutzer, T., Obholzer, K., Wolf, A., Mempel, M., Kernt, M., Kampik, A., & Priglinger, S. G. (2009). Oxidative Stress-Mediated Induction of MMP-1 and MMP-3 in Human RPE Cells. Investigative Ophthalmology & Visual Science, 50(11), 5495-5503. https://doi.org/10.1167/iovs.08-3193

  • Altemtam, N., El Nahas, M., & Johnson, T. (2012). Urinary matrix metalloproteinase activity in diabetic kidney disease: A potential marker of disease progression. Nephron Extra, 2(1), 219-232. https://doi.org/10.1159/000339645

  • Andreucci, M., Provenzano, M., Faga, T., Michael, A., Patella, G., Mastroroberto, P., Serraino, G. F., Bracale, U. M., lelapi, N., & Serra, R. (2021). Aortic Aneurysms, Chronic Kidney Disease and Metalloproteinases. Biomolecules, 11(2), Article 194. https://doi.org/10.3390%2Fbiom11020194

  • Arpino, V., Brock, M., & Gill, S. E. (2015). The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biology, 44-46, 247-254. https://doi.org/10.1016/j.matbio.2015.03.005

  • Benjamin, O., & Lappin, S. L. (2021). End-Stage Renal Disease. StatPearls Publishing.

  • Bhardwaj, S., Bhattacharjee, J., Bhatnagar, M. K., & M., Tyagi, S. (2013). Atherogenic index of plasma, castelli risk index and atherogenic coefficient-new parameters in assessing cardiovascular risk. International Journal of Pharmacy and Biological Science, 3(3), 359-364.

  • Bikbov, B., Purcell, C. A., Levey, A. S., Smith, M., Abdoli, A., Abebe, M., Adebayo, O. M., Afarideh, A., Agarwal, S. K., Agudelo-Botero, M., Ahmadian, E., Al-Aly, Z., Alipour, V., Almasi-Hashiani, A., Al-Raddadi, R. M., Alvis-Guzman, N., Amini, S., Andrei, T., Andrei, C. L., … & Murray, C. J. L. (2020). Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 395(10225), 709-733. https://doi.org/10.1016/S0140-6736(20)30045-3

  • Carome, M. A., Striker, L. J., Peten, E. P., Moore, J., Yang, C. W., Stetler-Stevenson, W. G., & Striker, G. E. (1993). Human glomeruli express TIMP-1 mRNA and TIMP-2 protein and mRNA. American Journal of Physiology-Renal Physiology, 264(6), F923-F929. https://doi.org/10.1152/ajprenal.1993.264.6.F923

  • Castelli, W. P., Abbott, R. D., & McNamara, P. M. (1983). Summary estimates of cholesterol used to predict coronary heart disease. Circulation, 67(4), 730-734. https://doi.org/10.1161/01.CIR.67.4.730

  • Cheng, Z., Limbu, M. H., Wang, Z., Liu, J., Liu, L., Zhang, X., Chen, P., & Liu, B. (2017). MMP-2 and 9 in Chronic Kidney Disease. International Journal of Molecular Sciences, 18(4), Article 776. doi:10.3390/ijms18040776

  • Chung, Y. C., Kim, Y. S., Bok, E., Yune, T. Y., Maeng, S., & Jin, B. K. (2013). MMP-3 contributes to nigrostriatal dopaminergic neuronal loss, BBB damage, and neuroinflammation in an MPTP mouse model of Parkinson’s disease. Mediators of Inflammation, 13, Article 370526. https://doi.org/10.1155/2013/370526

  • Cozzolino, M., Mangano, M., Stucchi, A., Ciceri, P., Conte, F., & Galassi, A. (2018). Cardiovascular disease in dialysis patients. Nephrology Dialysis Transplantation, 33(suppl_3), iii28-iii34. https://doi.org/10.1093/ndt/gfy174

  • Crespo-Salgado, J., Vehaskari, V. M., Stewart, T., Ferris, M., Zhang, Q., Wang, G., Blanchard, E. E., Taylor, C. M., Kallash, M., Greenbaum, L. A., & Aviles, D. H. (2016). Intestinal microbiota in pediatric patients with end stage renal disease: A midwest pediatric nephrology consortium study. Microbiome, 4, Article 50. https://doi.org/10.1186/s40168-016-0195-9

  • Cui, N., Hu, M., & Khalil, R. A. (2017). Biochemical and biological attributes of matrix metalloproteinases. Progress in Molecular Biology and Translational Science, 147, 1-73. https://doi.org/10.1016/bs.pmbts.2017.02.005

  • Dobiasova, M. (2006). AIP-Atherogenic index of plasma as a significant predictor of cardiovascular risk: From research to practice. Vnitrni lekarstvi, 52(1), 64-71.

  • Dobiásová, M., Frohlich, J., Sedová, M., Cheung, M. C., & Brown, B. G. (2011). Cholesterol esterification and atherogenic index of plasma correlate with lipoprotein size and findings on coronary angiography. Journal of Lipid Research, 52(3), 566-571. https://doi.org/10.1194/jlr.P011668

  • Erdur, M. F., Tonbul, H. Z., Ozbiner, H., Ozcicek, A., Ozcicek, F., Akbas, E. M., Ozbek, O., Hamur, H., & Turkmen, K. (2013). The relationship between atherogenic index of plasma and epicardial adipose tissue in hemodialysis and peritoneal dialysis patients. Renal Failure, 35(9), 1193-1198. https://doi.org/10.3109/0886022X.2013.823826

  • Essiarab, F., Taki, H., Lebrazi, H., Sabri, M., & Saile, R. (2014). Usefulness of lipid ratios and atherogenic index of plasma in obese Moroccan women with or without metabolic syndrome. Ethnicity & Disease, 24(2), 207-212.

  • Friedewald, W. T., Levy, R. I., & Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry, 18(6), 499-502. https://doi.org/10.1093/clinchem/18.6.499

  • Gaffney, J., Solomonov, I., Zehorai, E., & Sagi, I. (2015). Multilevel regulation of matrix metalloproteinases in tissue homeostasis indicates their molecular specificity in vivo. Matrix Biology, 44-46, 191-199.

  • Geneva-Popova, M., Popova-Belova, S., Popova, V., Chompalov, K., & Batalov, A. (2022). Assessment of serum and synovial fluid MMP-3 and MPO as biomarkers for psoriatic arthritis and their relation to disease activity indices. Rheumatology International, 42, 1605-1615. https://doi.org/10.1007/s00296-022-05159-4

  • Gillespie, F., Amicosante, A., Lo Scalzo, A., Chiarolla, E., Ondei, P., Paone, S., & Cerbo, M. (2015). Adapted HTA report: Valutazione HTA delle ModalitÀ di dialisi in Italia. [Report adaptation: Health technology assessment of the different dialysis modalities in Italy]. National Agency for Regional Health Services Rome, Italy.

  • Gregg, L. P., & Hedayati, S. S. (2018). Management of traditional cardiovascular risk factors in CKD: What are the data? American Journal of Kidney Diseases, 72(5), 728-744. https://doi.org/10.1053/j.ajkd.2017.12.007

  • Gurney, K. (2018). An Introduction to Neural Networks. CRC press. https://doi.org/10.1201/9781315273570

  • Haas, T. L., Davis, S. J., & Madri, J. A. (1998). Three-dimensional type I collagen lattices induce coordinate expression of matrix metalloproteinases MT1-MMP and MMP-2 in microvascular endothelial cells. Journal of Biological Chemistry, 273(6), 3604-3610. https://doi.org/10.1074/jbc.273.6.3604

  • Hamze, A. B., Wei, S., Bahudhanapati, H., Kota, S., Acharya, K. R., & Brew, K. (2007). Constraining specificity in the N‐domain of tissue inhibitor of metalloproteinases‐1; gelatinase‐selective inhibitors. Protein Science, 16(9), 1905-1913. https://doi.org/10.1110/ps.072978507

  • Hibbs, M. S., Hoidal, J. R., & Kang, A. H. (1987). Expression of a metalloproteinase that degrades native type V collagen and denatured collagens by cultured human alveolar macrophages. The Journal of Clinical Investigation, 80(6), 1644-1650. https://doi.org/10.1172/JCI113253

  • Huang, F., Wang, L., Zhang, Q., Wan, Z., Hu, L., Xu, R., Cheng, A., Lv, Y., & Liu, Q. (2021). Elevated atherogenic index and higher triglyceride increase risk of kidney function decline: A 7-year cohort study in Chinese adults. Renal Failure, 43(1), 32-39. https://doi.org/10.1080/0886022X.2020.1853569

  • Hunt, M. J., Aru, G. M., Hayden, M. R., Moore, C. K., Hoit, B. D., & Tyagi, S. C. (2002). Induction of oxidative stress and disintegrin metalloproteinase in human heart end-stage failure. American Journal of Physiology-Lung Cellular and Molecular Physiology, 283(2), L239-L245. https://doi.org/10.1152/ajplung.00001.2002

  • Ishizaki, M., Matsunaga, T., Adachi, K., & Miyashita, E. (2004). Serum matrix metalloproteinase-3 in hemodialysis patients with dialysis-related amyloidosis. Hemodialysis International, 8(3), 219-225. doi:https://doi.org/10.1111/j.1492-7535.2004.01099.x

  • Iyer, R. P., Patterson, N. L., Fields, G. B., & Lindsey, M. L. (2012). The history of matrix metalloproteinases: milestones, myths, and misperceptions. American Journal of Physiology-Heart and Circulatory Physiology, 303(8), H919-H930. https://doi.org/10.1152/ajpheart.00577.2012

  • Jacob-Ferreira, A. L., Kondo, M. Y., Baral, P. K., James, M. N. G., Holt, A., Fan, X., & Schulz, R. (2013). Phosphorylation status of 72 kDa MMP-2 determines its structure and activity in response to peroxynitrite. PLoS One, 8(8), Article e71794. https://doi.org/10.1371/journal.pone.0071794

  • Kageyama, Y., Miyamoto, S., Ozeki, T., Hiyoshi, M., Suzuki, M., & Nagano, A. (2000). Levels of rheumatoid factor isotypes, metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 in synovial fluid from various arthritides. Clinical Rheumatology, 19, 14-20. https://doi.org/10.1007/s100670050004

  • Kang, H. M., Ahn, S. H., Choi, P., Ko, Y.-A., Han, S. H., Chinga, F., Park, A. S. D., Tao, J., Sharma, K., Pullman, J., Bottinger, E. P., Goldberg, I. J., & Susztak, K. (2015). Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nature Medicine, 21(1), 37-46. https://doi.org/10.1038/nm.3762

  • Kazancioğlu, R. (2013). Risk factors for chronic kidney disease: An update. Kidney International Supplements, 3(4), 368-371. https://doi.org/10.1038%2Fkisup.2013.79

  • Kim, H., Oda, T., Lopez-Guisa, J., Wing, D., Edwards, D. R., Soloway, P. D., & Eddy, A. A. (2001). TIMP-1 deficiency does not attenuate interstitial fibrosis in obstructive nephropathy. Journal of the American Society of Nephrology, 12(4), 736-748.

  • Kochan, Z., Szupryczynska, N., Malgorzewicz, S., & Karbowska, J. (2021). Dietary lipids and dyslipidemia in chronic kidney disease. Nutrients, 13(9), Article 3138. https://doi.org/10.3390/nu13093138

  • Kwakernaak, A. J., Zelle, D. M., Bakker, S. J. L., & Navis, G. (2013). Central body fat distribution associates with unfavorable renal hemodynamics independent of body mass index. Journal of the American Society of Nephrology, 24(6), 987-994. https://doi.org/10.1681/asn.2012050460

  • Laville, S. M., Couturier, A., Lambert, O., Metzger, M., Mansencal, N., Jacquelinet, C., Laville, M., Frimat, L., Fouque, D., Combe, C., Robinson, B. M., Stengel, B., Liabeuf, S., Massy, Z. A. (2022). Urea levels and cardiovascular disease in patients with chronic kidney disease. Nephrology Dialysis Transplantation, 38(1), 184-192. https://doi.org/10.1093/ndt/gfac045

  • Lee, M. J., Park, J. T., Han, S. H., Kim, Y. L., Kim, Y. S., Yang, C. W., Kim, N. H., Kang, S. W., Kim, H. J., & Yoo, T. H. (2017). The atherogenic index of plasma and the risk of mortality in incident dialysis patients: Results from a nationwide prospective cohort in Korea. PloS One, 12(5), Article e0177499. https://doi.org/10.1371/journal.pone.0177499

  • Levey, A. S., Coresh, J., Greene, T., Marsh, J., Stevens, L. A., Kusek, J. W., & Lente, F. V. (2007) Expressing the modification of diet in renal disease study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clinical Chemistry, 53(4), 766-772. https://doi.org/10.1373/clinchem.2006.077180

  • Levin, A., Tonelli, M., Bonventre, J., Coresh, J., Donner, J.-A., Fogo, A. B., Fox, C. S., Gansevoort, R. T., Heerspink, H. J. L., Jardine, M., Kasiske, B., Köttgen, A., Kretzler, M., Levey, A. S., Luyckx, V. A., Mehta, R., Moe, O., Obrador, G., Pannu, N., … & Eckardt, K. U. (2017). Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. The Lancet, 390(10105), 1888-1917. https://doi.org/10.1016/S0140-6736(17)30788-2

  • Liang, X., Ye, M., Tao, M., Zheng, D., Cai, R., Zhu, Y., Jin, J., & He, Q. (2020). The association between dyslipidemia and the incidence of chronic kidney disease in the general Zhejiang population: a retrospective study. BMC Nephrology, 21, Article 252. https://doi.org/10.1186/s12882-020-01907-5

  • Lin, P. H., & Duann, P. (2020). Dyslipidemia in kidney disorders: perspectives on mitochondria homeostasis and therapeutic opportunities. Frontiers in Physiology, 11, Article 1050. https://doi.org/10.3389/fphys.2020.01050

  • Marchant, D. J., Bellac, C. L., Moraes, T. J., Wadsworth, S. J., Dufour, A., Butler, G. S., Bilawchuk, L. M., Hendry, R. G., Robertson, A.G., Cheung, C. T., Ng, J., Ang, L., Luo, Z., Heilbron., K., Norris, M. J., Duan, W., Bucyk, T., Karpov, A., Devel, L., ... & Overall, C. M. (2014). A new transcriptional role for matrix metalloproteinase-12 in antiviral immunity. Nature Medicine, 20(5), 493-502. https://doi.org/10.1038/nm.3508

  • Marônek, M., Marafini, I., Gardlík, R., Link, R., Troncone, E., & Monteleone, G. (2021). Metalloproteinases in inflammatory bowel diseases. Journal of Inflammation Research, 14, 1029-1041.

  • Martin, D. C., Sanchez-Sweatman, O. H., Ho, A., Inderdeo, D. S., Tsao, M.-S., & Khokha, R. (1999). Transgenic TIMP-1 inhibits simian virus 40 T antigen-induced hepatocarcinogenesis by impairment of hepatocellular proliferation and tumor angiogenesis. Laboratory Investigation; a Journal of Technical Methods and Pathology, 79(2), 225-234.

  • Martínez, M. C., & Andriantsitohaina, R. (2009). Reactive nitrogen species: molecular mechanisms and potential significance in health and disease. Antioxidants & Redox Signaling, 11(3), 669-702.

  • Maurya, N. K., Sengar, N., & Arya, P. (2018). Impact of hemodialysis on lipid profile among chronic renal failure patients (Regular and Non Regular Haemodialysis). The Pharma Innovation, 7(4), 363-365.

  • Mesquita, J., Varela, A., & Medina, J. L. (2010). Dyslipidemia in renal disease: Causes, consequences and treatment. Endocrinología y Nutrición, 57(9), 440-448. https://doi.org/10.1016/j.endonu.2010.06.003

  • Mikolasevic, I., Žutelija, M., Mavrinac, V., & Orlic, L. (2017). Dyslipidemia in patients with chronic kidney disease: Etiology and management. International Journal of Nephrology and Renovascular Disease, 10, 35-45. https://doi.org/10.2147/ijnrd.s101808

  • Mirrakhimov, A. E. (2012). Obstructive sleep apnea and kidney disease: Is there any direct link? Sleep and Breathing, 16, 1009-1016.

  • Mora-Gutiérrez, J. M., Rodríguez, J. A., Fernández-Seara, M. A., Orbe, J., Escalada, F. J., Soler, M. J., Roblero, M. F. S., Riera, M., Páramo, J. A., & Garcia-Fernandez, N. (2020). MMP-10 is increased in early stage diabetic kidney disease and can be reduced by renin-angiotensin system blockade. Scientific Reports, 10, Article 26. https://doi.org/10.1038/s41598-019-56856-3

  • Moustafa, H. E. D. S., & El-Seddek, M. (2020). Accurate diagnosis of covid-19 based on deep neural networks and chest x-ray images. Mansoura Engineering Journal, 45(3), 11-15. https://doi.org/10.21608/bfemu.2020.30471.1001

  • Murphy, G., & Nagase, H. (2008). Progress in matrix metalloproteinase research. Molecular Aspects of Medicine, 29(5), 290-308. https://doi.org/10.1016/j.mam.2008.05.002

  • Musiał, K., & Zwolińska, D. (2011). Neutrophil gelatinase-associated lipocalin (NGAL) and matrix metalloproteinases as novel stress markers in children and young adults on chronic dialysis. Cell Stress and Chaperones, 16, 163-171. https://doi.org/10.1007/s12192-010-0228-4

  • Naganuma, T., Sugimura, K., Uchida, J., Taishiro, K., Yoshimura, R., Takemoto, Y., & Nakatani, T. (2008a). Increased levels of serum matrix metalloproteinase-3 in haemodialysis patients with dialysis-related amyloidosis. Nephrology, 13(2), 104-108. https://doi.org/10.1111/j.1440-1797.2007.00845.x

  • Naganuma, T., Sugimura, K., Uchida, J., Tashiro, K., Yoshimura, R., Takemoto, Y., & Nakatani, T. (2008b). Increased levels of serum matrix metalloproteinase‐3 in haemodialysis patients with dialysis‐related amyloidosis. Nephrology, 13(2), 104-108.

  • Neovius, M., Jacobson, S. H., Eriksson, J. K., Elinder, C.-G., & Hylander, B. (2014). Mortality in chronic kidney disease and renal replacement therapy: A population-based cohort study. BMJ Open, 4(2), Article e004251. https://doi.org/10.1136/bmjopen-2013-004251

  • Nishi, H., Higashihara, T., & Inagi, R. (2019). Lipotoxicity in kidney, heart, and skeletal muscle dysfunction. Nutrients, 11(7), Article 1664. https://doi.org/10.3390/nu11071664

  • Nolan, D., Kraus, W. E., Hauser, E., Li, Y.-J., Thompson, D. K., Johnson, J., Chen, H.-C., Nelson, S., Haynes, C., Gregory, S. G., Kraus, V. B., & Shah, S. H. (2013). Genome-wide linkage analysis of cardiovascular disease biomarkers in a large, multigenerational family. PLoS One, 8(8), Article e71779. https://doi.org/10.1371/journal.pone.0071779

  • Parrish, A. R. (2017). Matrix metalloproteinases in kidney disease: Role in pathogenesis and potential as a therapeutic target. Progress In Molecular Biology And Translational Science, 148, 31-65.

  • Pawlak, K., Pawlak, D., & Mysliwiec, M. (2005). Circulating β-chemokines and matrix metalloproteinase-9/tissue inhibitor of metalloproteinase-1 system in hemodialyzed patients–Role of oxidative stress. Cytokine, 31(1), 18-24. https://doi.org/10.1016/j.cyto.2004.12.020

  • Peeters, S. A., Engelen, L., Buijs, J., Chaturvedi, N., Fuller, J. H., Schalkwijk, C. G., & Stehouwer, C. D., & EURODIAB Prospective Complications Study Group (2015). Plasma levels of matrix metalloproteinase-2,-3,-10, and tissue inhibitor of metalloproteinase-1 are associated with vascular complications in patients with type 1 diabetes: the EURODIAB Prospective Complications Study. Cardiovascular Diabetology, 14(1), Article 31. https://doi.org/10.1186/s12933-015-0195-2

  • Preston, G. A., Barrett, C. V., Alcorta, D. A., Hogan, S. L., Dinwiddie, L., Jennette, J. C., & Falk, R. J. (2002). Serum Matrix Metalloproteinases MMP-2 and MMP-3 Levels in Dialysis Patients Vary Independently of CRP and IL-6 Levels. Nephron, 92(4), 817-823. https://doi.org/10.1159/000065464

  • Rahman, M., Yang, W., Akkina, S., Alper, A., Anderson, A. H., Appel, L. J., He, J., Raj, D. S., Schelling, J., Strauss, L., Teal, V., Rader, D. J., & CRIC Study Investigators. (2014). Relation of serum lipids and lipoproteins with progression of CKD: The CRIC study. Clinical Journal of the American Society of Nephrology, 9(7), 1190-1198. https://doi.org/10.2215/cjn.09320913

  • Rehman, K. A., Betancor, J., Xu, B., Kumar, A., Rivas, C. G., Sato, K., Wong, L. P., Asher, C. R., & Klein, A. L. (2017). Uremic pericarditis, pericardial effusion, and constrictive pericarditis in end‐stage renal disease: Insights and pathophysiology. Clinical Cardiology, 40(10), 839-846. https://doi.org/10.1002/clc.22770

  • Ripley, B. D. (2007). Pattern Recognition and Neural Networks. Cambridge University Press. https://doi.org/10.1017/CBO9780511812651

  • Rosenstein, K., & Tannock, L. R. (2022). Dyslipidemia in Chronic Kidney Disease. In K. R. Feingold, B. Anawalt, M. R. Blackman, A. Boyce, G. Chrousos, E. Corpas, W. W. D. Herder, K. Dhatariya, K. Dungan, J. Hofland, S. Kalra, G. Kaltsas, N. Kapoor, C. Koch, P. Kopp, M. Korbonits, C. S. Kovacs, W. Kuohung, B. Laferrère & D. P. Wilson (Eds.), Endotext [Internet]. MDText.com, Inc.

  • Rydlova, M., Holubec, L., Ludvikova, M., Kalfert, D., Franekova, J., Povysil, C., & Ludvikova, M. (2008). Biological activity and clinical implications of the matrix metalloproteinases. Anticancer Research, 28(2B), 1389-1397.

  • Rysz, J., Banach, M., Stolarek, R. A., Pasnik, J., Cialkowska-Rysz, A., Koktysz, R., & Baj, Z. (2007). Serum matrix metalloproteinases MMP-2 and MMP-9 and metalloproteinase tissue inhibitors TIMP-1 and TIMP-2 in diabetic nephropathy. Journal of Nephrology, 20(4), 444-452.

  • Saini, M., Vamne, A., Kumar, V., & Chandel, M. (2021). Lipid Profile in Pre-dialysis and Post-dialysis End Stage Renal Disease Patients: A Cross-Sectional Comparative Study in Lucknow, India. Cureus, 13(9), 1-4.

  • Saran, R., Robinson, B., Abbott, K. C., Agodoa, L. Y., Albertus, P., Ayanian, J., Balkrishnan, R., Bragg-Gresham, J., Cao, J., Chen, J. L. T., Cope, E., Dharmarajan, S., Dietrich, X., Eckard, A., Eggers, P. W., Gaber, C., Gillen, D., Gipson, D., Gu, H., … & Shahinian, V. (2017). US renal data system 2016 annual data report: Epidemiology of kidney disease in the United States. American Journal of Kidney Diseases, 69(3), A7-A8. https://doi.org/10.1053/j.ajkd.2016.12.004

  • Sarnak, M. J., Levey, A. S., Schoolwerth, A. C., Coresh, J., Culleton, B., Hamm, L. L., McCullough, P. A., Kasiske, B. L., Kelepouris, E., Klag, M. J., Parfrey, P., Pfeffer, M., Raij, L., Spinosa, D. J., & Wilson, P. W. (2003). Kidney disease as a risk factor for development of cardiovascular disease: A statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Hypertension, 42(5), 1050-1065. https://doi.org/10.1161/01.HYP.0000102971.85504.7c

  • Sharma, H., Shah, T. J., Gorasia, J. H., & Baria, D. P. (2012). Lipid profile and lipoprotein (a) in chronic renal failure patients with and without hemodialysis. International Journal of Medicine and Public Health, 2(4), 28-31. https://dx.doi.org/10.5530/ijmedph.2.4.6

  • Shifris, I. (2020). Д²АБЕТИЧНИЙ СТАТУС, КОМОРБ²ДН²СТЬ ТА ВИЖИВАН²СТЬ ПАЦ²ªНТ²В З ХРОН²ЧНОЮ ХВОРОБОЮ НИРОК VД СТАД² ̄: КОГОРТНЕ ДОСЛ²ДЖЕННЯ [Diabetic status, comorbidity and survival in patients with chronic kidney disease stage 5: A cohort study]. Problems of Endocrine Pathology, 72(2), 95-103. https://doi.org/10.21856/j-PEP.2020.2.12

  • Steenkamp, R., Rao, A., & Roderick, P. (2015). UK renal registry 17th annual report: Chapter 5 survival and cause of death in UK adult patients on renal replacement therapy in 2013: National and centre-specific analyses. Nephron, 129(Suppl. 1), 99-129. https://doi.org/10.1159/000370275

  • Stenvinkel, P., Carrero, J. J., Axelsson, J., Lindholm, B., Heimbürger, O., & Massy, Z. (2008). Emerging biomarkers for evaluating cardiovascular risk in the chronic kidney disease patient: how do new pieces fit into the uremic puzzle? Clinical Journal of the American Society of Nephrology, 3(2), 505-521. https://doi.org/10.2215/cjn.03670807

  • Stetler-Stevenson, W. G. (2008). Tissue inhibitors of metalloproteinases in cell signaling: metalloproteinase-independent biological activities. Science Signaling, 1(27), Article re6. https://doi.org/10.1126/scisignal.127re6

  • Suzuki, D., Miyazaki, M., Jinde, K., Koji, T., Yagame, M., Endoh, M., Nomoto, K., & Sakai, H. (1997). In situ hybridization studies of matrix metalloproteinase-3, tissue inhibitor of metalloproteinase-1 and type IV collagen in diabetic nephropathy. Kidney International, 52(1), 111-119. https://doi.org/10.1038/ki.1997.310

  • Tan, R. J., & Liu, Y. (2012). Matrix metalloproteinases in kidney homeostasis and diseases. American Journal of Physiology - Renal Physiology, 302(11), F1351-1361. https://doi.org/10.1152/ajprenal.00037.2012

  • Theofilis, P., Vordoni, A., Koukoulaki, M., Vlachopanos, G., & Kalaitzidis, R. G. (2021). Dyslipidemia in chronic kidney disease: Contemporary concepts and future therapeutic perspectives. American Journal of Nephrology, 52(9), 693-701. https://doi.org/10.1159/000518456

  • Thompson, S., James, M., Wiebe, N., Hemmelgarn, B., Manns, B., Klarenbach, S., & Tonelli, M. (2015). Cause of death in patients with reduced kidney function. Journal of the American Society of Nephrology, 26(10), 2504-2511. https://doi.org/10.1681/asn.2014070714

  • Tunbridge, M. J., & Jardine, A. G. (2021). Atherosclerotic vascular disease associated with chronic kidney disease. Cardiology Clinics, 39(3), 403-414. https://doi.org/10.1016/j.ccl.2021.04.011

  • Vaziri, N. D., Moradi, H., & Zhao, Y.-Y. (2022). Chapter 4 - Altered lipid metabolism and serum lipids in chronic kidney disease. In J. D. Kopple, S. G. Massry, K. Kalantar-Zadeh & D. Fouque (Eds.), Nutritional Management of Renal Disease (4th ed.) (pp. 43-60). Academic Press. https://doi.org/10.1016/B978-0-12-818540-7.00009-4

  • Velasquez-Mao, A. J., Velasquez, M. A., Hui, Z., Armas-Ayon, D., Wang, J., & Vandsburger, M. H. (2021). Hemodialysis exacerbates proteolytic imbalance and pro-fibrotic platelet dysfunction. Scientific Reports, 11, Article 11764. https://doi.org/10.1038/s41598-021-91416-8

  • Visconti, L., Benvenga, S., Lacquaniti, A., Cernaro, V., Bruzzese, A., Conti, G., Buemi, M., & Santoro, D. (2016). Lipid disorders in patients with renal failure: Role in cardiovascular events and progression of chronic kidney disease. Journal of Clinical & Translational Endocrinology, 6, 8-14. https://doi.org/10.1016%2Fj.jcte.2016.08.002

  • Wang, Y., Meagher, R. B., Ambati, S., Cheng, H., Ma, P., & Phillips, B. G. (2021). Patients with obstructive sleep apnea have altered levels of four cytokines associated with cardiovascular and kidney disease, but near normal levels with airways therapy. Nature and Science Sleep, 13, 457-466. https://doi.org/10.2147/NSS.S282869

  • Wu, H., Xiong, L., Xu, Q., Wu, J., Huang, R., Guo, Q., Mao, H., Yu, X., & Yang, X. (2015). Higher serum triglyceride to high-density lipoprotein cholesterol ratio was associated with increased cardiovascular mortality in female patients on peritoneal dialysis. Nutrition, Metabolism and Cardiovascular Diseases, 25(8), 749-755. https://doi.org/10.1016/j.numecd.2015.05.006

  • Zakiyanov, O., Kalousová, M., Zima, T., & Tesař, V. (2019). Matrix metalloproteinases in renal diseases: a critical appraisal. Kidney and Blood Pressure Research, 44(3), 298-330. https://doi.org/10.1159/000499876

  • Zhang, X., Xiang, C., Zhou, Y. H., Jiang, A., Qin, Y. Y., & He, J. (2014). Effect of statins on cardiovascular events in patients with mild to moderate chronic kidney disease: a systematic review and meta-analysis of randomized clinical trials. BMC Cardiovascular Disorders, 14, Article 19. https://doi.org/10.1186/1471-2261-14-19

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-3881-2022

Download Full Article PDF

Share this article

Related Articles