e-ISSN 2231-8526
ISSN 0128-7680
Nurfarah Aini Mocktar, Mohamad Sofi Abu Hassan, Maulidiani Maulidiani, Wan Iryani Wan Ismail, Izwandy Idris, Farhanini Yusoff and Noor Aniza Harun
Pertanika Journal of Science & Technology, Volume 33, Issue 3, April 2025
DOI: https://doi.org/10.47836/pjst.33.3.21
Keywords: 1H NMR metabolomics, LC-MS/MS analysis, Marphysa moribidii, metabolite profiles, polychaete
Published on: 2025-04-23
Marphysa moribidii (marine polychaetes) exhibits distinct age-related characteristics based on body width in the initial seven chaetigers, excluding parapodia or bristles that are classified into three age classes: Class Ι (body width ranging from 3–5 mm), Class ΙΙ (6–8 mm), and Class ΙΙΙ (9–11 mm). Despite its potential, the exploration of metabolites in marine worms, particularly through metabolomics, remains limited. The aim of this study is to identify the metabolite profile and depict the metabolic pathways of different age classes of M. moribidii utilising proton nuclear magnetic resonance spectroscopy (1H NMR) metabolomics and liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. A total of 35 metabolites were identified using 1H NMR metabolomics, including amino acids, carbohydrates, fatty acids, glycerol, nitrogenous compounds, organic compounds, and vitamins. LC-MS/MS analysis also discovered 36 metabolites that can be categorised into organic acids, carbohydrates, phenolic compounds, fatty acids, and amino acids. Class II M. moribidii emerged to have the highest concentration of chemicals originating from amino and fatty acids, making it the ideal age for harvesting. Comparing the metabolite profiles across different age groups of M. moribidii could provide valuable insights into its physiological processes, metabolic dynamics, and potential bioactive compounds present at various developmental stages.
Ali, O., & Szabó, A. (2023). Review of eukaryote cellular membrane lipid composition, with special attention to the fatty acids. International Journal of Molecular Sciences, 24(21), Article 15693. https://doi.org/10.3390/ijms242115693
Aliu, E., Kanungo, S., & Arnold, G.L. (2018). Amino acid disorders. Annals of Translational Medicine, 6(24), 471–471. https://doi.org/10.21037/atm.2018.12.12
Alves, S. P., Araujo, C. M., Queiroga, R. C., Madruga, M. S., Parente, M. O. M., Medeiros, A. N., & Bessa, R. J. B. (2017). New insights on the metabolism of ricinoleic acid in ruminants. Journal of Dairy Science, 100(10), 8018–8032. https://doi.org/10.3168/jds.2017-13117
Balashova, E. E., Maslov, D. L., Trifonova, O. P., Lokhov, P. G., & Archakov, A. I. (2022). Metabolome profiling in aging studies. Biology, 11, Article 1570. https://doi.org/10.3390/biology11111570
Barnathan, G. (2009). Non-methylene-interrupted fatty acids from marine invertebrates: Occurrence, characterization and biological properties. Biochimie, 91(6), 671–678. https://doi.org/10.1016/j.biochi.2009.03.020
Bojarska, J., Mieczkowski, A., Ziora, Z., Skwarczynski, M., Toth, I., Shalash, A. O., Parang, K., El-Mowafi, S. A., Mohammed, E. H. M., Elnagdy, S., Alkhazindar, M., & Wolf, W. M. (2021). Cyclic dipeptides: The biological and structural landscape with special focus on the anti-cancer proline-based scaffold. Biomolecules, 11(10), Article 1515. https://doi.org/10.3390/biom11101515
Bruce, S. O. (2022). Secondary metabolites from natural products. In R. Vijayakumar & S. S. S. Raja (Eds.), Secondary Metabolites - Trends and Reviews (pp. 51-70). IntechOpen. https://doi.org/10.5772/intechopen.102222
Calzada, E., Onguka O., & Claypool, S. M. (2016). Phosphatidylethanolamine metabolism in health and disease. International Review of Cell and Molecular Biology, 321, 29–88. https://doi.org/10.1016/bs.ircmb.2015.10.001
Capa, M., & Hutchings P. (2021). Annelid diversity: Historical overview and future perspectives. Diversity, 13(3), 1–14. https://doi.org/10.3390/d13030129
Charli, J. L., Rodríguez-Rodríguez, A., Hernández-Ortega, K., Cote-Vélez, A., Uribe, R. M., Jaimes-Hoy, L., & Joseph-Bravo, P. (2020). The thyrotropin-releasing hormone-degrading ectoenzyme, a therapeutic target? Frontiers in Pharmacology, 11, 1–21. https://doi.org/10.3389/fphar.2020.00640
Choudhary, A., Naughton, L. M., Montánchez, I., Dobson, A. D. W., & Rai, D. K. (2017). Current status and future prospects of marine natural products (MNPs) as antimicrobials. Marine Drugs, 15(9), Article 272. https://doi.org/10.3390/md15090272
Copes, N., Edwards, C., Chaput, D., Saifee, M., Barjuca I., Nelson, D., Paraggio, A., Saad, P., Lipps, D., Stevens, S. M., & Bradshaw, P. C. (2015). Metabolome and proteome changes with aging in Caenorhabditis elegans. Experimental Gerontology, 72, 67–84. https://doi.org/10.1016/j.exger.2015.09.013
D’Abrosca, B., Fiorentino, A., Ricci, A., Scognamiglio, M., Pacifico, S., Piccolella, S., & Monaco, P. (2010). Structural characterization and radical scavenging activity of monomeric and dimeric cinnamoyl glucose esters from Petrorhagia velutina leaves. Phytochemistry Letters, 3(1), 38–44. https://doi.org/10.1016/j.phytol.2009.11.001
Elgar, M. A. (2019). Chemical signaling: Air, water, and on the substrate. Encyclopedia of Animal Behavior, 1, 462 – 473. https://doi.org/10.1016/B978-0-12-809633-8.90718-0
Emwas, A. H., Roy, R., McKay, R. T., Tenori, L., Saccenti, E., Gowda G. A. N., Raftery, D., Alahmari, F., Jaremko, L., Jaremko, M., & Wishart, D. S. (2019). NMR spectroscopy for metabolomics research. Metabolites, 9(7), Article 123. https://doi.org/10.3390/metabo9070123
Galas, L., Raoult, E., Tonon, M. C., Okada, R., Jenks, B. G., Castaño, J. P., Kikuyama, S., Malagon, M., Roubos, E. W., & Vaudry, H. (2009). TRH acts as a multifunctional hypophysiotropic factor in vertebrates. General and Comparative Endocrinology, 164(1), 40–50. https://doi.org/10.1016/j.ygcen.2009.05.003
Gathungu, R. M., Kautz, R., Kristal, B. S., Bird, S. S., & Vouros, P. (2020). The integration of LC-MS and NMR for the analysis of low molecular weight trace analytes in complex matrices. Mass Spectrometry Reviews, 39(1-2), 35–54. https://doi.org/10.1002/mas.21575
Gheda, S. F., & Ismail, G. A. (2020). Natural products from some soil cyanobacterial extracts with potent antimicrobial, antioxidant and cytotoxic activities. Anais da Academia Brasileira de Ciências, 92(2), 1–18. https://doi.org/10.1590/0001-3765202020190934
Glasby, C. J., & Timm, T. (2008). Global diversity of polychaetes (Polychaeta; Annelida) in freshwater. In E. V. Balian, C. Lévêque, H. Segers, & K. Martens (Eds.), Freshwater Animal Diversity Assessment (pp. 107–115). Springer. https://doi.org/10.1007/978-1-4020-8259-7_13
Glasby, C. J., Erséus, C., & Martin, P. (2021). Annelids in extreme aquatic environments: Diversity, adaptations and evolution. Diversity, 13(2), Article 98. https://doi.org/10.3390/d13020098
Górska, B., Gromisz, S., & Włodarska-Kowalczuk, M. (2019). Size assessment in polychaete worms - Application of morphometric correlations for common North Atlantic taxa. Limnology and Oceanography: Methods, 17(4), 254–265. https://doi.org/10.1002/lom3.10310
Guimarães, A., & Venâncio, A. (2022). The potential of fatty acids and their derivatives as antifungal agents: A review. Toxins, 14(188), 1–21. https://doi.org/10.3390/toxins14030188
Hassan, M. S. A., Elias, N. A., Hassan, M., Rahmah, S., Wan, I. W. I., & Harun, N. A. (2023). Polychaeta-mediated synthesis of gold nanoparticles: A potential antibacterial agent against Acute Hepatopancreatic Necrosis Disease (AHPND)–causing bacteria, Vibrio parahaemolyticus. Heliyon, 9(2023), Article e21663. https://doi.org/10.1016/j.heliyon.2023.e21663
Huang, L., Zhu, X., Zhou, S., Cheng, Z., Shi, K., Zhang, C., & Shao, H. (2021). Phthalic acid esters: Natural sources and biological activities. Toxins, 13(7), Article 495. https://doi.org/10.3390/toxins13070495
Idris, I., & Arshad, A. (2013). Checklist of polychaetous annelids in Malaysia with redescription of two commercially exploited species. Asian Journal of Animal and Veterinary Advances, 8(3), 409-436.
Idris, I., & Hutchings, P. (2014). Description of a new species of Marphysa Quatrefages, 1865 (Polychaeta: Eunicidae) from the west coast of Peninsular Malaysia and comparisons with species from Marphysa Group A from the Indo-West Pacific and Indian Ocean. Memoirs of Museum Victoria, 71, 1447–2554. https://doi.org/10.24199/j.mmv.2014.71.11
Imbs, A. B., Ermolenko, E. V., Grigorchuk, V. P., Sikorskaya, T. V., & Velansky, P. V. (2021). Current progress in lipidomics of marine invertebrates. Marine Drugs, 19(12), Article 660. https://doi.org/10.3390/md19120660
Izzati, F., Warsito, M. F., Bayu, A., Prasetyoputri, A., Atikana, A., Sukmarini, L., Rahmawati, S. I., & Putra, M. Y., (2021). Chemical diversity and biological activity of secondary metabolites isolated from Indonesian marine invertebrates. Molecules, 26(7), Article 1898. https://doi.org/10.3390/molecules26071898
Khowala, S., Verma, D., & Banik, S. P., (2008). Biomolecules: Introduction, structure & function. Indian Institute of Chemical Biology, 3–92.
Konkel, A., & Schunck, W.H. (2011). Role of cytochrome P450 enzymes in the bioactivation of polyunsaturated fatty acids. Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics, 1814, 210–222. https://doi.org/10.1016/j.bbapap.2010.09.009
Li, Z., Yin, H., Chen, W., Jiang, C., Hu, J., Xue, Y., Yao, D., Peng, Y., & Hu, X. (2020). Synergistic effect of pseudolaric acid b with fluconazole against resistant isolates and biofilm of candida tropicalis. Infection and Drug Resistance, 13, 2733–2743. https://doi.org/10.2147/IDR.S261299
Lopez, M. J., & Mohiuddin, S. S. (2024). Biochemistry, Essential Amino Acids. StatPearls Publishing.
Malcicka, M., Visser, B., & Ellers, J. (2018). An evolutionary perspective on linoleic acid synthesis in animals. Evolutionary Biology, 45(1), 15–26. https://doi.org/10.1007/s11692-017-9436-5
Marion, D. (2013). An introduction to biological NMR spectroscopy. Molecular & Cellular Proteomics, 12(11), 3006–3025. https://doi.org/10.1074/mcp.O113.030239
Moco, S. (2022). Studying metabolism by NMR-based metabolomics. Frontiers in Molecular Biosciences, 9, 1–12. https://doi.org/10.3389/fmolb.2022.882487
Occhioni, G. E., Brasil, A., & Araújo, A. F. (2009). Morphometric study of Phragmatopoma caudata (Polychaeta: Sabellida: Sabellariidae). Zoologia (Curitiba), 26, 739-746.
Patel, M. K., Pandey, S., Kumar, M., Haque, M. I., Pal, S., & Yadav, N. S. (2021). Plants metabolome study: Emerging tools and techniques. Plants, 10(11), 1–24. https://doi.org/10.3390/plants10112409
Pei, A. U. E., Huai, P. C., Masimen, M. A. A., Wan, I. W. I., Idris, I., & Harun, N. A. (2020). Biosynthesis of gold nanoparticles (AuNPs) by marine baitworm Marphysa moribidii Idris, Hutchings and Arshad 2014 (Annelida: Polychaeta) and its antibacterial activity. Advances in Natural Sciences: Nanoscience and Nanotechnology, 11(1), Article 015001. https://doi.org/10.1088/2043-6254/ab6291
Rahman, M. M., Ahmad, S. H., Mohamed, M. T. M., & Rahman, M. Z. A. (2014). Antimicrobial compounds from leaf extracts of Jatropha curcas, Psidium guajava, and Andrographis paniculata. The Science World Journal, 2014, Article 35240. https://doi.org/10.1155/2014/635240
Rapi, H. S., Soh, N. A. C., Azam, N. S. M., Maulidiani, M., Assaw, S., Haron, M. N., Ali A. M., Idris, I., & Ismail, W. I. W. (2020). Effectiveness of aqueous extract of marine baitworm Marphysa moribidii Idris, Hutchings and Arshad, 2014 (Annelida, Polychaeta), on acute wound healing using Sprague Dawley rats. Evidence-Based Complementary and Alternative Medicine, 2020, Article 408926. https://doi.org/10.1155/2020/1408926
Riemann, L., & Azam, F. (2002). Widespread N-acetyl-D-glucosamine uptake among pelagic marine bacteria and its ecological implications. Applied and Environmental Microbiology, 68(11), 5554–5562. https://doi.org/10.1128/AEM.68.11.5554-5562.2002
Rolland, F., Moore, B., & Sheen, J. (2002). Sugar sensing and signalling in plants. The Plant Cell, 14(1), 185–205. https://doi.org/10.1105/tpc.010455.S186
Rosman, N. S. R., Harun, N. A., Idris I., & Ismail, W. I. W. (2020). Eco-friendly silver nanoparticles (AgNPs) fabricated by green synthesis using the crude extract of marine polychaete, Marphysa moribidii: Biosynthesis, characterisation, and antibacterial applications. Heliyon, 6(11), Article e05462. https://doi.org/10.1016/j.heliyon.2020.e05462
Rosman, N. S. R., Masimen, M. A. A., Harun, N. A., Idris, I., & Ismail, W. I. W. (2021). Biogenic silver nanoparticles (AgNPs) from Marphysa moribidii extract: Optimization of synthesis parameters. International Journal of Technology, 12(3), 635–648. https://doi.org/10.14716/ijtech.v12i3.4303
Ruiz, A. J. C., Boushehri, M. A. S., Phan, T., Carle, S., Garidel P., Buske, J., & Lamprecht, A. (2022). Alternative excipients for protein stabilization in protein therapeutics: Overcoming the limitations of polysorbates. Pharmaceutics, 14(12), Article 2575. https://doi.org/10.3390/pharmaceutics14122575
Ruocco, N., Nuzzo, G., d’Ippolito, G., Manzo, E., Sardo, A., Ianora, A., Romano, G., Iuliano, A., Zupo, V., Costantini, M., & Fontana, A. (2020). Lipoxygenase pathways in diatoms: Occurrence and correlation with grazer toxicity in four benthic species. Marine Drugs, 18(1), Article 66. https://doi.org/10.3390/md18010066
Salam, U., Ullah, S., Tang, Z. H., Elateeq, A. A., Khan, Y., Khan, J., Khan, A., & Ali, S. (2023). Plant metabolomics: An overview of the role of primary and secondary metabolites against different environmental stress factors. Life, 13(3), 1–25. https://doi.org/10.3390/life13030706
Salamanca, N., Giráldez, I., Morales, E., de La Rosa, I., & Herrera, M. (2021). Phenylalanine and tyrosine as feed additives for reducing stress and enhancing welfare in gilthead seabream and meagre. Animals, 11(1), 1–11. https://doi.org/10.3390/ani11010045
Skalski, B., Pawelec, S., Jedrejek, D., Rolnik, A., Pietukhov, R., Piwowarczyk, R., Stochmal, A., & Olas, B. (2021). Antioxidant and anticoagulant effects of phenylpropanoid glycosides isolated from broomrapes (Orobanche caryophyllacea, Phelipanche arenaria, and P. ramosa). Biomedicine & Pharmacotheraphy, 139, Article 111618. https://doi.org/10.1016/j.biopha.2021.111618
Sperstad, S. V., Haug, T., Blencke, H. M., Styrvold, O. B., Li, C., & Stensvåg, K. (2011). Antimicrobial peptides from marine invertebrates: Challenges and perspectives in marine antimicrobial peptide discovery. Biotechnology Advances, 29(5), 519–530. https://doi.org/10.1016/j.biotechadv.2011.05.021
Ulu, G., Semerciöz, A. S., & Özilgen, M. (2021). Energy storage and reuse in biological systems: Case studies. Energy Storage, 3(5), 1–12. https://doi.org/10.1002/est2.253
Vance, J. E., & Tasseva, G. (2013). Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, 1831(3), 543–554. https://doi.org/10.1016/j.bbalip.2012.08.016
Verdonschot, P. F. (2015). Introduction to Annelida and the class Polychaeta. In J. H. Thorp & D. C. Rogers (Eds.), Thorp and Covich’s Freshwater Invertebrates: Ecology and General Biology (pp. 509–528). Academic Press. https://doi.org/10.1016/B978-0-12-385026-3.00020-6
Wijaya, I. D. M. R., Idris, I., Ismail, W. I. W., Asari, A., Harun, N. A., Rudiyanto, R., Tarman, K., Abas, F., & Maulidiani, M. (2024). Discrimination of marine polychaete species of different harvest times using FTIR metabolomics. Malaysian Journal of Chemistry, 26(2), 129-138. https://doi.org/10.55373/mjchem.v26i2.129
Yamashita, S., Miyazawa, T., Higuchi, O., Kinoshita, M., & Miyazawa, T. (2023). Marine plasmalogens: A gift from the sea with benefits for age-associated diseases. Molecules, 28(17), Article 6328. https://doi.org/10.3390/molecules28176328
Yi, C., Liang, H., Huang, D., Yu, H., Xue, C., Gu, J., Chen, X., Wang, Y., Ren, M., & Zhang, L. (2023). Phenylalanine plays important roles in regulating the capacity of intestinal immunity, antioxidants and apoptosis in largemouth bass (Micropterus salmoides). Animal, 13(18), 1–14. https://doi.org/10.3390/ani13182980
Zamzam, N. I., Kamarudin, N. I., Idris, I., Harun, N. A., Ismail, W. I. W., & Abas, F. (2021). Investigation of antioxidant activity and chemical fingerprint of marine polychaete based on ATR-FTIR metabolomics. Universiti Malaysia Terengganu Journal of Undergraduate Research, 3(4), 81-88. https://doi.org/10.46754/umtjur.v3i4.241
Zanol, J., da Silva, T., Dos, S. C., & Hutchings, P. (2016). Marphysa (Eunicidae, polychaete, Annelida) species of the Sanguinea group from Australia, with comments on pseudo-cryptic species. Invertebrate Biology, 135, 328–344. https://doi.org/10.1111/ivb.12146
Zeng, M., Tao, J., Xu, S., Bai, X., & Zhang, H. (2023). Marine organisms as a prolific source of bioactive depsipeptides. Marine Drugs, 21(2), Article 120. https://doi.org/10.3390/md21020120
ISSN 0128-7680
e-ISSN 2231-8526