Home / Regular Issue / JST Vol. 30 (4) Oct. 2022 / JST-3409-2022

 

Evaluation of Subcritical Organic Rankine Cycle by Pure and Zeotropic of Binary and Ternary Refrigerants

Omid Rowshanaie, Mohd Zahirasri Mohd Tohir, Faizal Mustapha, Mohammad Effendy Ya’acob and Hooman Rowshanaie

Pertanika Journal of Science & Technology, Volume 30, Issue 4, October 2022

DOI: https://doi.org/10.47836/pjst.30.4.02

Keywords: Exergy efficiency, flue gas, Organic Rankine Cycle (ORC), payback period (PBP), specific investment cost (SIC)

Published on: 28 September 2022

The simulation configuration and process analysis of the Subcritical Organic Rankine Cycle (SORC) system are carried out for the potential comparison between pure, binary, and ternary zeotropic mixtures of R1234ze(E), R1234yf, and R134a as refrigerant working fluids based on applying the flue gas as a heat source with medium temperature. The compression pressure was selected as an optimized variable input parameter of SORC with the lower limit of boundary condition (1.4 MPa); to mitigate air ingress and sub-atmospheric pressure that led to approach optimum net power output generated. Increasing the compression pressure has a positive relationship with the superheated temperature and the mass enthalpy change in the evaporation and, therefore, in the expansion process. In parallel, the enthalpy and entropy changes in the flue gas and cold water positively correlate with exergy efficiency. So, R1234ze(E)/ R1234yf/R134a with 68.35% and R1234yf/ R134a with 69.29% as the lowest and highest exergy efficiency in the highest compression pressure; furthermore, the SIC consequences of increasing the cost of each component of the SORC system that has a direct relationship with the PPC and the required exchanger area of evaporation and condensation process and generating a net power output of the turbine. As a result, the maximum to the minimum value of specific investment cost (SIC) achieves R134a with 5807402.18-22455670.61 $.kW-1 and R1234yf with 16.82-17.38% reduction, respectively. To sum up, the lowest payback period (PBP) was R1234yf with 302 days.

  • Ahmadi, A., El Haj Assad, M., Jamali, D. H., Kumar, R., Li, Z. X., Salameh, T., Al-Shabi, M., & Ehyaei, M. A. (2020). Applications of geothermal Organic Rankine Cycle for electricity production. Journal of Cleaner Production, 274, Article 122950. https://doi.org/10.1016/j.jclepro.2020.122950

  • Alvi, J. Z., Feng, Y., Wang, Q., Imran, M., & Pei, G. (2021a). Effect of phase change materials on the performance of direct vapor generation solar Organic Rankine Cycle system. Energy Reports, 223, Article 120006. https://doi.org/10.1016/j.energy.2021.120006

  • Alvi, J. Z., Feng, Y., Wang, Q., Imran, M., & Pei, G. (2021b). Effect of working fluids on the performance of phase change material storage based direct vapor generation solar Organic Rankine Cycle system. Energy Reports, 7, 348-361. https://doi.org/10.1016/j.egyr.2020.12.040

  • Ata, S., Kahraman, A., & Sahin, R. (2020). Prediction and sensitivity analysis under different performance indices of R1234ze ORC with Taguchi’s multi-objective optimization. Case Studies in Thermal Engineering, 22, Article 100785. https://doi.org/10.1016/j.csite.2020.100785

  • Bianchi, M., Branchini, L., De Pascale, A., Melino, F., Ottaviano, S., Peretto, A., & Torricelli, N. (2020). Replacement of R134a with low-GWP fluids in a kW-size reciprocating piston expander: Performance prediction and design optimization. Energy, 206, Article 118174. https://doi.org/10.1016/j.energy.2020.118174

  • Braimakis, K., Mikelis, A., Charalampidis, A., & Karellas, S. (2020). Exergetic performance of CO2 and ultra-low GWP refrigerant mixtures as working fluids in ORC for waste heat recovery. Energy, 203, Article 117801. https://doi.org/10.1016/j.energy.2020.117801

  • Cambi, M., Tascioni, R., Cioccolanti, L., & Bocci, E. (2016). Converting a commercial scroll compressor into an expander: Experimental and analytical performance evaluation. Energy Procedia, 129, 363-370. https://doi.org/10.1016/j.egypro.2017.09.234

  • Chagnon-Lessard, N., Mathieu-Potvin, F., & Gosselin, L. (2020). Optimal design of geothermal power plants: A comparison of single-pressure and dual-pressure Organic Rankine Cycles. Geothermics, 86, Article 101787. https://doi.org/10.1016/j.geothermics.2019.101787

  • Eyerer, S., Dawo, F., Wieland, C., & Spliethoff, H. (2020). Advanced ORC architecture for geothermal combined heat and power generation. Energy, 205, Article 117967. https://doi.org/10.1016/j.energy.2020.117967

  • Guo, H., Gong, M., & Sun, H. (2021). Performance analysis of a novel energy storage system based on the combination of positive and reverse Organic Rankine Cycles. Energy, 231, Article 120905. https://doi.org/10.1016/j.energy.2021.120905

  • Hamid, M. R. A., Yaw, T. C. S., Tohir, M. Z. M., Ghani, W. A. W. A. K., Sutrisna, P. D., & Jeong, H. K. (2021). Zeolitic imidazolate framework membranes for gas separations: Current state-of-the-art, challenges, and opportunities. Journal of Industrial and Engineering Chemistry, 98, 17-41.

  • Hu, S., Li, J., Yang, F., Yang, Z., & Duan, Y. (2020). Multi-objective optimization of Organic Rankine Cycle using hydrofluorolefins (HFOs) based on different target preferences. Energy, 203, Article 117848. https://doi.org/10.1016/j.energy.2020.117848

  • Imran, M., Haglind, F., Asim, M., & Zeb Alvi, J. (2018). Recent research trends in Organic Rankine Cycle technology: A bibliometric approach. Renewable and Sustainable Energy Reviews, 81, 552-562. https://doi.org/10.1016/j.rser.2017.08.028

  • Invernizzi, C. M., Iora, P., Preßinger, M., & Manzolini, G. (2016). HFOs as substitute for R-134a as working fluids in ORC power plants: A thermodynamic assessment and thermal stability analysis. Applied Thermal Engineering, 103, 790-797. https://doi.org/10.1016/j.applthermaleng.2016.04.101

  • Ji, W. T., Xiong, S. M., Chen, L., Zhao, C. Y., & Tao, W. Q. (2021). Effect of subsurface tunnel on the nucleate pool boiling heat transfer of R1234ze(E), R1233zd(E) and R134a. International Journal of Refrigeration, 122, 122-133. https://doi.org/10.1016/j.ijrefrig.2020.11.002

  • Kang, Z., Zhu, J., Lu, X., Li, T., & Wu, X. (2015). Parametric optimization and performance analysis of zeotropic mixtures for an Organic Rankine Cycle driven by low-medium temperature geothermal fluids. Applied Thermal Engineering, 89, 323-331. https://doi.org/10.1016/j.applthermaleng.2015.06.024

  • Kavathia, K., & Prajapati, P. (2021). A review on biomass-fired CHP system using fruit and vegetable waste with regenerative Organic Rankine Cycle (RORC). Materialstoday: Proceedings, 43, 572-578. https://doi.org/10.1016/j.matpr.2020.12.052

  • Li, J., Liu, Q., Ge, Z., Duan, Y., & Yang, Z. (2017). Thermodynamic performance analyses and optimization of subcritical and transcritical Organic Rankine Cycles using R1234ze(E) for 100-200 °C heat sources. Energy Conversion and Management, 149, 140-154. https://doi.org/10.1016/j.enconman.2017.06.060

  • Li, L., Ge, Y. T., Luo, X., & Tassou, S. A. (2018). Experimental analysis and comparison between CO2 transcritical power cycles and R245fa Organic Rankine Cycles for low-grade heat power generations. Applied Thermal Engineering, 136, 708-717. https://doi.org/10.1016/j.applthermaleng.2018.03.058

  • Li, T., Meng, N., Liu, J., Zhu, J., & Kong, X. (2019). Thermodynamic and economic evaluation of the Organic Rankine Cycle (ORC) and two-stage series organic Rankine cycle (TSORC) for flue gas heat recovery. Energy Conversion and Management, 183, 816-829. https://doi.org/10.1016/j.enconman.2018.12.094

  • Liu, P., Shu, G., Tian, H., Feng, W., Shi, L., & Wang, X. (2020). Experimental study on transcritical Rankine cycle (TRC) using CO2/R134a mixtures with various composition ratios for waste heat recovery from diesel engines. Energy Conversion and Management, 208, Article 112574. https://doi.org/10.1016/j.enconman.2020.112574

  • Loni, R., Najafi, G., Bellos, E., Rajaee, F., Said, Z., & Mazlan, M. (2021). A review of industrial waste heat recovery system for power generation with Organic Rankine Cycle: Recent challenges and future outlook. Journal of Cleaner Production, 287, Article 125070. https://doi.org/10.1016/j.jclepro.2020.125070

  • Lu, P., Luo, X., Wang, J., Chen, J., Liang, Y., Yang, Z., Wang, C., & Chen, Y. (2021). Thermo-economic design, optimization, and evaluation of a novel zeotropic ORC with mixture composition adjustment during operation. Energy Conversion and Management, 230, Article 113771. https://doi.org/10.1016/j.enconman.2020.113771

  • Manente, G., Lazzaretto, A., & Bonamico, E. (2017). Design guidelines for the choice between single and dual pressure layouts in Organic Rankine Cycle (ORC) systems. Energy, 123, 413-431. https://doi.org/10.1016/j.energy.2017.01.151

  • Mignard, D. (2014). Correlating the chemical engineering plant cost index with macroeconomic indicators. Chemical Engineering Research and Design, 92(2), 285-294. https://doi.org/10.1016/j.cherd.2013.07.022

  • Molés, F., Navarro-Esbrí, J., Peris, B., Mota-Babiloni, A., & Mateu-Royo, C. (2017). R1234yf and R1234ze as alternatives to R134a in Organic Rankine Cycles for low temperature heat sources. Energy Procedia, 142, 1192-1198. https://doi.org/10.1016/j.egypro.2017.12.380

  • Nafey, A. S., & Sharaf, M. A. (2010). Combined solar organic Rankine cycle with reverse osmosis desalination process: energy, exergy, and cost evaluations. Renewable Energy, 35(11), 2571-2580. https://doi.org/10.1016/j.renene.2010.03.034

  • Peris, B., Navarro-Esbrí, J., Moles, F., Martí, J. P., & Mota-Babiloni, A. (2015). Experimental characterization of an Organic Rankine Cycle (ORC) for micro-scale CHP applications. Applied Thermal Engineering, 79, 1-8. https://doi.org/10.1016/j.applthermaleng.2015.01.020

  • Ping, X., Yang, F., Zhang, H., Zhang, J., Zhang, W., & Song, G. (2021). Introducing machine learning and hybrid algorithm for prediction and optimization of multistage centrifugal pump in an ORC system. Energy, 222, Article 120007. https://doi.org/10.1016/j.energy.2021.120007

  • Quoilin, S., Declaye, S., Tchanche, B. F., & Lemort, V. (2011). Thermo-economic optimization of waste heat recovery Organic Rankine Cycles. Applied Thermal Engineering, 31(14-15), 2885-2893. https://doi.org/10.1016/j.applthermaleng.2011.05.014

  • Roumpedakis, T. C., Loumpardis, G., Monokrousou, E., Braimakis, K., Charalampidis, A., & Karellas, S. (2020). Exergetic and economic analysis of a solar driven small scale ORC. Renewable Energy, 157, 1008-1024. https://doi.org/10.1016/j.renene.2020.05.016

  • Rowshanaie, O., Mustapha, S., Ahmad, K. A., & Rowshanaie, H. (2015). Simulation of Organic Rankine Cycle through flue gas to large scale electricity generation purpose. Jurnal Teknologi, 77(27), 9-18. https://doi.org/10.11113/jt.v77.6878

  • Rowshanaie, O., Tohir, M. Z. M., Mustapha, F., Ya’acob, M. E., & Rowshanaie, H. (2020). Optimization and analyzing of subcritical Organic Rankine Cycle using R1234ze(E) for low and medium temperature heat source. IOP Conf. Series: Materials Science and Engineering, 778, Article 012074. https://doi.org/10.1088/1757-899X/778/1/012074

  • Schilling, J., Entrup, M., Hopp, M., Gross, J., & Bardow, A. (2021). Towards optimal mixtures of working fluids: Integrated design of processes and mixtures for Organic Rankine Cycles. Renewable and Sustainable Energy Reviews, 135, Article 110179. https://doi.org/10.1016/j.rser.2020.110179

  • Shengjun, Z., Huaixin, W., & Tao, G. (2011). Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation. Applied Energy, 88(8), 2740-2754. https://doi.org/10.1016/j.apenergy.2011.02.034

  • Sun, K., Zhao, T., Wu, S., & Yang, S. (2021). Comprehensive evaluation of concentrated solar collector and Organic Rankine cycle hybrid energy process with considering the effects of different heat transfer fluids. Energy Reports, 7, 362-384. https://doi.org/10.1016/j.egyr.2021.01.004

  • Sun, Q., Lin, D., Khayatnezhad, M., & Taghavi, M. (2021). Investigation of phosphoric acid fuel cell, linear Fresnel solar reflectorand Organic Rankine Cycle polygeneration energy system in differentclimatic conditions. Process Safety and Environmental Protection, 147, 993-1008. https://doi.org/10.1016/j.psep.2021.01.035

  • Tian, R., Xu, Y., Shi, L., Song, P., & Wei, M. (2020). Mixed convection heat transfer of supercritical pressure R1234yf in horizontal flow: Comparison study as alternative to R134a in organic Rankine cycles. Energy, 205, Article 118061. https://doi.org/10.1016/j.energy.2020.118061

  • Turton, R., Bailie, R. C., Whiting, W. B., Shaeiwitz, J. A., & Bhattacharyya, D. (2012). Analysis, synthesis and design of chemical processes (4th Ed.). Pearson Education.

  • Vaupel, Y., Huster, W. R., Mhamdi, A., & Mitsos, A. (2021). Optimal operating policies for Organic Rankine Cycles for waste heat recovery under transient conditions. Energy, 224, Article 120126. https://doi.org/10.1016/j.energy.2021.120126

  • Vélez, F., Segovia, J. J., Martín, M. C., Antolín, G., Chejne, F., & Quijano, A. (2012). A technical, economical and market review of Organic Rankine Cycles for the conversion of low-grade heat for power generation. Renewable and Sustainable Energy Reviews, 16(6), 4175-4189. https://doi.org/10.1016/j.rser.2012.03.022

  • Vera, D., Baccioli, A., Jurado, F., & Desideri, U. (2020). Modeling and optimization of an ocean thermal energy conversion system for remote islands electrification. Renewable Energy, 162, 1399-1414. https://doi.org/10.1016/j.renene.2020.07.074

  • Wang, F., Wang, L., Zhang, H., Xia, L., Miao, H., & Yuan, J. (2021). Design and optimization of hydrogen production by solid oxide electrolyzer with marine engine waste heat recovery and ORC cycle. Energy Conversion and Management, 229, Article 113775. https://doi.org/10.1016/j.enconman.2020.113775

  • Wang, J., Wang, J., Li, J., & Liu, N. (2020). Pressure drop of R134a and R1234ze(E) flow boiling in microchannel arrays with single- and double-side heating. International Journal of Heat and Mass Transfer, 161, Article 120241. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120241

  • Wang, Z., Xia, X., Pan, H., Zuo, Q., Zhou, N., & Xie, B. (2021). Fluid selection and advanced exergy analysis of dual-loop ORC using zeotropic mixture. Applied Thermal Engineering, 185, Article 116423. https://doi.org/10.1016/j.applthermaleng.2020.116423

  • Yang, F., Zhang, H., Song, S., Bei, C., Wang, H., & Wang, E. (2015). Thermoeconomic multi-objective optimization of an Organic Rankine Cycle for exhaust waste heat recovery of a diesel engine. Energy, 93, 2208-2228. https://doi.org/10.1016/j.energy.2015.10.117

  • Yang, M. H. (2018). Payback period investigation of the Organic Rankine Cycle with mixed working fluids to recover waste heat from the exhaust gas of a large marine diesel engine. Energy Conversion and Management, 162, 189-202. https://doi.org/10.1016/j.enconman.2018.02.032

  • Yang, Z., Valtz, A., Coquelet, C., Wu, J., & Lu, J. (2020). Experimental measurement and modelling of vapor-liquid equilibrium for 3,3,3- Trifluoropropene (R1243zf) and trans-1,3,3,3-Tetrafluoropropene (R1234ze(E)) binary system. International Journal of Refrigeration, 120, 137-149. https://doi.org/10.1016/j.ijrefrig.2020.08.016

  • Yu, X., Huang, Y., Li, Z., Huang, R., Ghang, J., & Wang, L. (2021). Characterization analysis of dynamic behavior of basic ORC under fluctuating heat source. Applied Thermal Engineering, 189, Article 116695. https://doi.org/10.1016/j.applthermaleng.2021.116695

  • Zhai, H., An, Q., & Shi, L. (2016). Analysis of the quantitative correlation between the heat source temperature and the critical temperature of the optimal pure working fluid for subcritical Organic Rankine Cycles. Applied Thermal Engineering, 99, 383-391. https://doi.org/10.1016/j.applthermaleng.2016.01.058

  • Zhai, H., An, Q., & Shi, L. (2018). Zeotropic mixture active design method for Organic Rankine Cycle. Applied Thermal Engineering, 129, 1171-1180. https://doi.org/10.1016/j.applthermaleng.2017.10.027

  • Zhang, C., Fu, J., Kang, J., & Fu, W. (2018). Performance optimization of low-temperature geothermal organic Rankine cycles using axial turbine isentropic efficiency correlation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40, Article 61. https://doi.org/10.1007/s40430-018-0996-9

  • Zhang, C., Liu, C., Wang, S., Xu, X., & Li, Q. (2017). Thermo-economic comparison of subcritical organic Rankine cycle based on different heat exchanger configurations. Energy, 123, 728-741. https://doi.org/10.1016/j.energy.2017.01.132

  • Zhang, Y., Lei, B., Masaud, Z., Imran, M., Wu, Y., Liu, J., Qin, X., & Muhammad, H. A. (2020). Waste heat recovery from diesel engine exhaust using a single-screw expander Organic Rankine Cycle system: Experimental investigation of exergy destruction. Energies, 13(22), Article 5914. https://doi.org/10.3390/en13225914

  • Zheng, N., Wei, J., & Zhao, L. (2018). Analysis of a solar Rankine cycle powered refrigerator with zeotropic mixtures. Solar Energy, 162, 57-66. https://doi.org/10.1016/j.solener.2018.01.011

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-3409-2022

Download Full Article PDF

Share this article

Recent Articles