e-ISSN 2231-8526
ISSN 0128-7680
Abdullah Ali M Asiri
Pertanika Journal of Science & Technology, Volume 30, Issue 4, October 2022
DOI: https://doi.org/10.47836/pjst.30.4.12
Keywords: Abdomen, chest, DoseCal, effective dose, PCXMC
Published on: 28 September 2022
With the rapid development of X-ray equipment, assessing the patient’s radiation dose has become an important issue. This study uses DoseCal and PCXMC software to estimate the effective dose (ED) for 510 adult patients undergoing abdomen anteroposterior (AP) and chest anteroposterior/posteroanterior (AP/PA) X-ray examinations in Najran, Saudi Arabia. This study reported our experience with DoseCal and PCXMC software in calculating the ED and organ doses in abdomen and chest X-ray diagnostics. The mean ED values calculated using DoseCal were 0.051, 0.115, and 0.045 mSv for Abdomen AP, chest AP, and PA, respectively. Further, the mean ED calculated using PCXMC is 0.062, 0.132, and 0.047 mSv for Abdomen AP, chest AP, and PA, respectively. The dose results calculated by PCXMC were higher than DoseCal; however, we strongly recommended the dose surveyors utilize PCXMC because it uses the most recent tissue weighting factors (WTs) and offers a risk calculation.
Abdelhalim, M. A. K. (2010). Patient dose levels for seven different radiographic examination types. Saudi Journal of Biological Sciences, 17(2), 115-118. https://doi.org/10.1016/J.SJBS.2009.12.013
Alsayyari, A. A. S., Omer, M. A. A., Alkhidir, N. A. M., & Auod, A. S. A. (2017). Study of common requested radiographs and relative exposure dose in Qassim State. International Journal of Medical Imaging, 5(2), 14-18. https://doi.org/10.11648/J.IJMI.20170502.12
Azevedo, A. C., Osibote, O. A., & Boechat, M. C. B. (2006). Paediatric X-ray examinations in Rio de Janeiro. Physics in Medicine and Biology, 51(15), Article 3723. https://doi.org/10.1088/0031-9155/51/15/008
Cristy, M., & Eckerman, K. F. (1987). Specific absorbed fractions of energy at various ages from internal photon sources: 7, Adult male. Oak Ridge National Lab. https://inis.iaea.org/Search/search.aspx?orig_q=RN:19012902
Davies, M., McCallum, H., White, G., Brown, J., & Helm, M. (1997). Patient dose audit in diagnostic radiography using custom designed software. Radiography, 3(1), 17-25. https://doi.org/10.1016/S1078-8174(97)80021-1
Hart, D., Jones, D. C., & Wall, B. F. (1991). Normalized organ doses for medical X-ray examinations calculated using Monte Carlo techniques. NRPB-SR262. National Radiological Protection Board.
Hart, D., Jones, D. G., & Wall, B. F. (1994). Estimation of effective dose in diagnostic radiology from entrance surface dose and dose-area product measurement (NRPB R-262). National Radiological Protection Board.
ICRP. (1991). 1990 Recommendations of the International Commission on Radiological Protection. Annuals of the ICRP. 21(1-3), 1-201. https://pubmed.ncbi.nlm.nih.gov/2053748/
ICRP. (2007). The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Annals of the ICRP, 37(2-4), 9-34. https://doi.org/10.1016/J.ICRP.2007.10.003
Jones, D. G., & Wall, B. F. (1985). Organ doses from medical X-ray examinations calculated using Monte Carlo techniques (NRPB-R-186). National Radiological Protection Board.
Kyriou, J. C., Newey, V., & Fitzgerald, M. C. (2000). Patient doses in diagnostic radiology at the touch of a button. The Radiological Protection Center, St. George’s Hospital.
Mettler, F. A., Huda, W. J., Yoshizumi, T. T., & Mahesh, M. (2008). Effective doses in radiology and diagnostic nuclear medicine: A catalog. Radiology, 248(1), 254-263. https://doi.org/10.1148/RADIOL.2481071451
Nahangi, H., & Chaparian, A. (2015). Assessment of radiation risk to pediatric patients undergoing conventional X-ray examinations. Radioprotection, 50(1), 19-25. https://doi.org/10.1051/RADIOPRO/2014023
Osei, E. K., & Darko, J. (2013). A survey of organ equivalent and effective doses from diagnostic radiology procedures. ISRN Radiology, 2013, Article 204346. https://doi.org/10.5402/2013/204346
Osman, H., Elzaki, A., Elsamani, M., Alzaeidi, J., Sharif, K., & Elmorsy, A. (2013). Peadiatric radiation dose from routine X-ray examination: A hospital based study, Taif pediatric hospital. Scholars Journal of Applied Medical Sciences, 5, 511-515.
Rubai, S. S., Rahman, M. S., Purohit, S., Patwary, M. K. A., Meaze, A. M. H., & Mamun, A. A. (2018). Measurements of entrance surface dose and effective dose of patients in diagnostic radiography. Biomedical Journal of Scientific & Technical Research, 12(1), 8924-8928. https://doi.org/10.26717/BJSTR.2018.12.002186
Saeed, M. K. (2017). Dose measurement using Gafchromic film for patients undergoing interventional cardiology procedures. Radiation Protection Dosimetry, 174(1), 109-112. https://doi.org/10.1093/RPD/NCW082
Servomaa, A., & Tapiovaara, M. (1998). Organ dose calculation in medical X ray examinations by the program PCXMC. Radiation Protection Dosimetry, 80(1-3), 213-219. https://doi.org/10.1093/OXFORDJOURNALS.RPD.A032509
Taha, M. T., Kutbi, R. A., & Allehyani, S. H. (2016). Effective dose evaluation for chest and abdomen X-ray examinations. International Journal of Science and Research (IJSR), 5(3), 420-422. https://doi.org/10.21275/V5I3.NOV161884
Tapiovaara, M., & Siiskonen, T. (2008). PCXMC : A Monte Carlo program for calculating patient doses in medical X-ray examinations (STUK-A231). Finnish Centre for Radiation and Nuclear Safety.
Wall, B. F., Haylock, R., Jansen, J. T. M., Hillier, M. C., Hart, D., & Shrimpton, P. C. (2011). Radiation Risks from Medical X-ray Examinations as a Function of the Age and Sex of the Patient (HPA-CRCE-028). Health Protection Agency Centre for Radiation, Chemical and Environmental Hazards.
ISSN 0128-7680
e-ISSN 2231-8526