e-ISSN 2231-8526
ISSN 0128-7680
Muhammad Amirul Nadim Zarizi, Irnie Azlin Zakaria, Mohamad Noor Izwan Johari, Wan Ahmad Najmi Wan Mohamed and Raja Mazuir Raja Ahsan Shah
Pertanika Journal of Science & Technology, Volume 30, Issue 2, April 2022
DOI: https://doi.org/10.47836/pjst.30.2.29
Keywords: Current drop, heat transfer, nanofluids, PEM fuel cell
Published on: 1 April 2022
Proton Exchange Membrane Fuel Cell (PEMFC) generates electricity through the reaction of hydrogen and oxygen. PEMFC is considered clean technology since the by-products of the reaction are only electricity, water, and heat. Thermal management of PEMFC can be further improved through the adoption of nanofluids as its cooling medium. Nanofluids are fluids that contain suspensions of nanoparticles in their base fluid. Nanofluids have better heat transfer performance as compared to their base fluid due to their significant thermal conductivity improvement. However, unlike any other heat transfer application, there is a strict limit on the electrical conductivity of the nanofluids due to their electrically active environment. Therefore, there is a possible current leakage to the coolant due to the nanofluids’ conductive behavior. In this study, heat transfer performance and current drop of 0.5% Al2O3 and 0.5% SiO2 water were investigated. The nanofluids were forced to flow in a charged channel subjected to a heater pad of 60°C to 70°C to mimic the operating condition of a PEMFC. The performance of each nanofluid was observed and compared to distilled water. The channel temperature was reduced by 43.3 % and 42.7 % by Al2O3 and SiO2 nanofluids, respectively, compared to base fluids at Re 700. In terms of current drop, SiO2 nanofluids have the highest current drop with 2.33 % from the initial current value. It was further justified with the increment in electrical conductivity value of the fluids after the experiment, thus justifying the current leakage hypothesis.
Abdolbaqi, M. K., Azmi, W. H., Mamat, R., Sharma, K. V., & Najafi, G. (2016). Experimental investigation of thermal conductivity and electrical conductivity of BioGlycol-water mixture based Al2O3 nanofluid. Applied Thermal Engineering, 102, 932-941. https://doi.org/10.1016/j.applthermaleng.2016.03.074
Aghayari, R., Maddah, H., Zarei, M., Dehghani, M., & Mahalle, S. G. K. (2014). Heat transfer of nanofluid in a double pipe heat exchanger. International Scholarly Research Notices, 2014, 1-7. https://doi.org/10.1155/2014/736424
Asirvatham, L. G., Vishal, N., Gangatharan, S. K., & Lal, D. M. (2009). Experimental study on forced convective heat transfer with low volume fraction of CuO/Water nanofluid. Energies, 2(1), 97-119. https://doi.org/10.3390/en20100097
Barbir, F. (2005). PEM fuel cells: Theory and practice. Elsevier.
Ballard. (2010). FCgen ® -1310 fuel cell stack - Design characteristics. Ballard Power System Inc.
Beckwith, T. G., Marangoni, R. D., & Lienhard, J. H. (2007). Assessing and presenting experimental data. Mechanical Measurements, 5, 45-73.
Cengel, Y. A., & Afshin, J. G. (2020). Heat and mass transfer: Fundamentals and applications (5th Ed.). McGraw-Hill Education.
Cengel, Y. A., & Cimbala, J. (2006). Fluid mechanics: Fundamentals and application. McGraw-Hill Higher Education.
Chereches, E. I., & Minea, A. A. (2019). Electrical conductivity of new nanoparticle enhanced fluids: An experimental study. Nanomaterials, 9(9), 1-15. https://doi.org/10.3390/nano9091228
Coleman, H. W., & Steele, W. G. (1995). Engineering application of experimental uncertainty analysis. AIAA Journal, 33(10), 1888-1896. https://doi.org/10.2514/3.12742
ّHermans, T., Nguyen, F., Robert, T., & Revil, A. (2014). Geophysical methods for monitoring temperature changes in shallow low enthalpy geothermal systems. Energies, 7(8), 5083-5118. https://doi.org/10.3390/en7085083
Islam, R. (2016). Using nanofluids for proton exchange membrane fuel cell (PEMFC) cooling in automotive applications (Doctoral dissertation). RMIT University, Australia.
Jama, M., Singh, T., Gamaleldin, S. M., Koc, M., Samara, A., Isaifan, R. J., & Atieh, M. A. (2016). Critical review on nanofluids: Preparation, characterization, and applications. Journal of Nanomaterials, 2016, Article 6717624. https://doi.org/10.1155/2016/6717624
Khalid, S., Zakaria, I. A., Mohamed, W. A. N. W., & Hamzah, W. A. W. (2019). Comparative analysis of thermophysical properties of Al2O3 and SiO2 nanofluids. Journal of Mechanical Engineering, 8(Specialissue1), 153-163.
Khalid, S., Zakaria, I., Azmi, W. H., & Mohamed, W. A. N. W. (2020). Thermal–electrical–hydraulic properties of Al2O3–SiO2 hybrid nanofluids for advanced PEM fuel cell thermal management. Journal of Thermal Analysis and Calorimetry, 143(2), 1555-1567. https://doi.org/10.1007/s10973-020-09695-8
Larminie, J., & Dicks, A. (2013). Fuel cell systems explained (2nd Ed.). John Wiley & Sons Ltd. https://doi.org/10.1002/9781118878330
Muhammad, N. M. A., & Sidik, N. A. C. (2018). Applications of nanofluids and various minichannel configurations for heat transfer improvement: A review of numerical study. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 46(1), 49-61.
Muhammad, N. M., Sidik, N. A. C., Saat, A., & Abdullahi, B. (2019). Effect of nanofluids on heat transfer and pressure drop characteristics of diverging-converging minichannel heat sink. CFD Letters, 11(4), 105-120.
Pourfayaz, F., Sanjarian, N., Kasaeian, A., Astaraei, F. R., Sameti, M., & Nasirivatan, S. (2018). An experimental comparison of SiO2/water nanofluid heat transfer in square and circular cross-sectional channels. Journal of Thermal Analysis and Calorimetry, 131(2), 1577-1586. https://doi.org/10.1007/s10973-017-6500-4
Sahin, B., Manay, E., & Akyurek, E. F. (2015). An experimental study on heat transfer and pressure drop of CuO-water nanofluid. Journal of Nanomaterials, 16(1), Article 336. https://doi.org/10.1155/2015/790839
Taner, T. (2018). Energy and exergy analyze of PEM fuel cell: A case study of modeling and simulations. Energy, 143, 284-294. https://doi.org/10.1016/j.energy.2017.10.102
Usri, N. A., Azmi, W. H., Mamat, R., Hamid, K. A., & Najafi, G. (2015). Thermal conductivity enhancement of Al2O3 nanofluid in ethylene glycol and water mixture. Energy Procedia, 79, 397-402. https://doi.org/10.1016/j.egypro.2015.11.509
Xuan, Y., & Li, Q. (2003). Investigation on convective heat transfer and flow features of nanofluids. Journal of Heat Transfer, 125(1), 151-155. https://doi.org/10.1115/1.1532008
Zakaria, I. A., Mohamed, W. A. N. W., Mamat, A. M. I., Sainan, K. I., Nawi, M. R. M., & Najafi, G. H. (2018). Numerical analysis of Al2O3 nanofluids in serpentine cooling plate of PEM fuel cell. Journal of Mechanical Engineering, 5(Specialissue1), 1-13.
Zakaria, I. A., Mohamed, W. A. N. W., Zailan, M. B., & Azmi, W. H. (2019). Experimental analysis of SiO2-distilled water nanofluids in a polymer electrolyte membrane fuel cell parallel channel cooling plate. International Journal of Hydrogen Energy, 44(47), 25850-25862. https://doi.org/10.1016/j.ijhydene.2019.07.255
Zakaria, I., Azmi, W. H., Mamat, A. M. I., Mamat, R., Saidur, R., Talib, S. F. A., & Mohamed, W. A. N. W. (2016). Thermal analysis of Al2O3-water ethylene glycol mixture nanofluid for single PEM fuel cell cooling plate: An experimental study. International Journal of Hydrogen Energy, 41(9), 5096-5112. https://doi.org/10.1016/j.ijhydene.2016.01.041
Zakaria, I., Azmi, W. H., Mohamed, W. A. N. W., Mamat, R., & Najafi, G. (2015a). Experimental investigation of thermal conductivity and electrical conductivity of Al2O3 nanofluid in water - Ethylene glycol mixture for proton exchange membrane fuel cell application. International Communications in Heat and Mass Transfer, 61, 61-68. https://doi.org/10.1016/j.icheatmasstransfer.2014.12.015
Zakaria, I., Mohamed, W. A. N. W., & Azmi, W. H. (2015b). Thermal analysis on heat transfer enhancement and fluid flow for Al2O3 water-ethylene glycol nanofluid in single PEMFC mini channel. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 9(9), 1661-1666.
ISSN 0128-7680
e-ISSN 2231-8526