e-ISSN 2231-8526
ISSN 0128-7680
Muhammad Shuaib Khan, Mohd Basyaruddin Abdul Rahman, Mohd Zuki Abu Bakar, Mohammed Mustapha Noordin, Shakeeb Ullah, Adamu Abdul Abubakar, Saifur Rehman, Aisha Saddiqua and Loqman Mohammad Yusof
Pertanika Journal of Science & Technology, Pre-Press
DOI: https://doi.org/10.47836/pjst.32.5.09
Keywords: Cytotoxicity, fetal bovine serum, M. dunni, non-toxic cryoprotective, subzero temperatures, α helix
Published: 2024-08-08
In order to assess the cytotoxic effects of the cryoprotectant helix Antarctic yeast-orientated antifreeze peptide Afp1m on normal mouse skin fibroblasts, an in vitro model was developed for cytotoxicity assessment. In order to evaluate the cytotoxic effects of Afp1m, the cells of M. dunni (Clone III8C) were subjected to various amounts of Afp1m. The cell viability was assessed using MTT Assay (Tetrazolium dye MTT 3-(4, 5 dimethylthiazol-2-yl)-2, 5-10 diphenyltetrazolium bromide) against the positive control cells (Clone III8C) that were cultured with 10% FBS (Foetal Bovine Serum) using an Elisa reader and in medium containing various amounts (10, 5, 2, 1 and 0.5 mg/mL) of Afp1m, the control group (10% FBS) displayed varying survival percentages (78.86 ± 10.17%, 88.38 ± 3.19%, 88.75 ± 7.19 %, 90.61 ± 7.11%, 91.19 ± 4.52%, and 100.00 ± 0.0 %) throughout 24 hr. At 72 hr of treatment, the cell viability scores of Afp1m at 5, 2, 1, and 0.5 mg/mL were significantly higher (p<0.05) than those of 10mg/mL, which showed 86.73 ± 6.92 % viability of cells (103.9 ± 6.56 %, 104.3 ± 5.13%, 100.9 ± 1.71%, 102.8 ± 1.24%, and 100.00 ± 0.0%). At 24, 48, and 72 hr, retarded development was noted in 10 mg/mL Afp1m. Development was observed, albeit more slowly than in the positive control and treated with lesser concentrations. The findings of this work indicate that Afp1m exhibits cryoprotective properties without inducing toxicity when used for the cryopreservation of M. dunni (Clone III8C) cells.
Adler, K., Arkona, C., Manteuffel, R., & Süss, K. H. (1993). Electron-microscopical localization of chloroplast proteins by immunogold labelling on cryo-embedded spinach leaves. Cell Biology International, 17(2), 213-220. https://doi.org/10.1006/cbir.1993.1057
Ammerman, N. C., Beier‐Sexton, M., & Azad, A. F. (2008). Growth and maintenance of Vero cell lines. Current Protocols in Microbiology, 11(1), A.4E.1-A.4E.7. https://doi.org/10.1002/9780471729259.mca04es11
Baardsnes, J., Jelokhani‐Niaraki, M., Kondejewski, L. H., Kuiper, M. J., Kay, C. M., Hodges, R. S., & Davies, P. L. (2001). Antifreeze protein from shorthorn sculpin: Identification of the ice‐binding surface. Protein Science, 10(12), 2566-2576. https://doi.org/10.1110/ps.ps.26501
Bang, J. K., Lee, J. H., Murugan, R. N., Lee, S. G., Do, H., Koh, H. Y., Shim, H. E., Kim, H. C., & Kim, H. J. (2013). Antifreeze peptides and glycopeptides, and their derivatives: potential uses in biotechnology. Marine Drugs, 11(6), 2013-2041. https://doi.org/10.3390/md11062013
Beirão, J., Zilli, L., Vilella, S., Cabrita, E., Schiavone, R., & Herráez, M. P. (2012). Improving sperm cryopreservation with antifreeze proteins: effect on gilthead seabream (Sparus aurata) plasma membrane lipids. Biology of Reproduction, 86(2), 59-1. https://doi.org/10.1095/biolreprod.111.093401
Biggs, C. I., Bailey, T. L., Graham, B., Stubbs, C., Fayter, A., & Gibson, M. I. (2017). Polymer mimics of biomacromolecular antifreezes. Nature Communications, 8(1), Article 1546. https://doi.org/10.1038/s41467-017-01421-7
Chao, H., Davies, P. L., & Carpenter, J. F. (1996). Effects of antifreeze proteins on red blood cell survival during cryopreservation. Journal of Experimental Biology, 199(9), 2071-2076. https://doi.org/10.1242/jeb.199.9.2071
Chen, C., & Okayama, H. (1987). High-efficiency transformation of mammalian cells by plasmid DNA. Molecular and Cellular Biology, 7(8), 2745-2752. https://doi.org/10.1128/mcb.7.8.2745-2752.1987
Degner, B. M., Chung, C., Schlegel, V., Hutkins, R., & McClements, D. J. (2014). Factors influencing the freeze‐thaw stability of emulsion‐based foods. Comprehensive Reviews in Food Science and Food Safety, 13(2), 98-113. https://doi.org/10.1111/1541-4337.12050
Freshney, R. I. (2005). Culture of specific cell types. In Culture of Animal Cells: A Manual of Basic Technique (pp. 375-420). John Wiley & Sons. https://doi.org/10.1002/0471747599.cac023
Grout, B., Morris, J., & McLellan, M. (1990). Cryopreservation and the maintenance of cell lines. Trends in Biotechnology, 8, 293-297.
Hincha, D. K., De Vries, A. L., & Schmitt, J. M. (1993). Cryotoxicity of antifreeze proteins and glycoproteins to spinach thylakoid membranes - comparison with cryotoxic sugar acids. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1146(2), 258-264. https://doi.org/10.1016/0005-2736(93)90364-6
Hirano, Y., Nishimiya, Y., Matsumoto, S., Matsushita, M., Todo, S., Miura, A., Komatsu, Y., & Tsuda, S. (2008). Hypothermic preservation effect on mammalian cells of type III antifreeze proteins from notched-fin eelpout. Cryobiology, 57(1), 46-51. https://doi.org/10.1016/j.cryobiol.2008.05.006
Ho, W. Y., Yeap, S. K., Ho, C. L., Rahim, R. A., & Alitheen, N. B. (2012). Development of multicellular tumor spheroid (MCTS) culture from breast cancer cell and a high throughput screening method using the MTT assay. Plos One, 7(9), Article e44640. https://doi.org/10.1371/journal.pone.0044640
Katkov, I. I., Bolyukh, V. F., Chernetsov, O. A., Dudin, P. I., Grigoriev, A. Y., Isachenko, V., Isachenko, E., Lulat, A. G. M., Moskovtsev, S. I., Petrushko, M. P., Pinyaev, V. I., Sokol, K. M., Sokol, Y. I., Sushko, A. B., & Yakhnenko, I. (2012). Kinetic vitrification of spermatozoa of vertebrates: What can we learn from nature? In I. I. Katkov (Ed.), Current Frontiers in Cryobiology (pp.3-40). INTECH Open Access Publisher. https://www.intechopen.com/chapters/31227
Liu, J. X., Srivastava, R., Che, P., & Howell, S. H. (2007). An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28. The Plant Cell, 19(12), 4111-4119. https://doi.org/10.1105/tpc.106.050021
Migliolo, L., Silva, O. N., Silva, P. A., Costa, M. P., Costa, C. R., Nolasco, D. O., Barbosa, J. A. R., Silva, M. R. R., Bemquerer, M. P., Lima, L. M. P., Romanos, M. T. V., Freitas, S. M., Magalhães, B. S., & Franco, O. L. (2012). Structural and functional characterization of a multifunctional alanine-rich peptide analogue from Pleuronectes americanus. Plos One, 7(10), Article e47047. https://doi.org/10.1371/journal.pone.0047047
Parvaneh, S., Mohler, J., Toosizadeh, N., Grewal, G. S., & Najafi, B. (2017). Postural transitions during activities of daily living could identify frailty status: Application of wearable technology to identify frailty during unsupervised condition. Gerontology, 63(5), 479-487. https://doi.org/10.1159/000460292
Ritar, A. J. (1999). Artificial insemination with cryopreserved semen from striped trumpeter (Latris lineata). Aquaculture, 180(1-2), 177-187. https://doi.org/10.1016/S0044-8486(99)00109-X
Shah, S. H. H., Kar, R. K., Asmawi, A. A., Rahman, M. B. A., Murad, A. M. A., Mahadi, N. M., Basri, M., Rahman, R. N. Z. A., Salleh, A. B., Chatterjee, S., Tejo, B. A., & Bhunia, A. (2012). Solution structures, dynamics, and ice growth inhibitory activity of peptide fragments derived from an antarctic yeast protein. Plos One, 7(11), Article e49788. https://doi.org/10.1371/journal.pone.0049788
Sun, Y., Maltseva, D., Liu, J., Hooker, T., Mailänder, V., Ramløv, H., DeVries, A. L., Bonn, M., & Meister, K. (2022). Ice recrystallization inhibition is insufficient to explain cryopreservation abilities of antifreeze proteins. Biomacromolecules, 23(3), 1214-1220. https://doi.org/10.1021/acs.biomac.1c01477
Weng, C. H., & Hsu, M. C. (2008). Regeneration of granular activated carbon by an electrochemical process. Separation and Purification Technology, 64(2), 227-236. https://doi.org/10.1016/j.seppur.2008.10.006
ISSN 0128-7702
e-ISSN 2231-8534
Share this article