Home / Pre-Press / JST-4354-2023

 

Development of Small-scale Integrated Hydroponics—Animal Waste Bioreactor (AWB) for Romaine Lettuce (Lactuca sativa L. var. longofolia) Production

Elman Cantero Torres, Theody Bernardo Sayco, Marvin Mateo Cinense, Jonathan Viernes Fabula, Wendy Mateo and Carolyn Grace Galo Somera

Pertanika Journal of Science & Technology, Pre-Press

DOI: https://doi.org/10.47836/pjst.32.3.02

Keywords: Bioponics, chicken manure tea, mineralization, nutrient cycling, soilless culture, sustainable crop production

Published: 2024-04-01

As improper processing and disposal of animal waste cause negative impacts on the environment, the animal industry sector must shift to more sustainable practices to lessen these effects. Recently, the application of the circular economy concept in agriculture, using animal waste as part of nutrient cycling, has emerged as a sustainable approach. The study aims to develop and test the small-scale integrated hydroponics-animal waste bioreactor (AWB) for romaine lettuce production using chicken manure tea (CMT) derived from dried chicken manure as a primary nutrient source. Three integrated hydroponics-AWB systems, with varying concentrations of CMT at 1,000 ppm, 1,200 ppm, and 1,400 ppm total dissolved solids (maintained within an upper and lower bound of 50 ppm), were constructed, tested, and compared to conventional hydroponics that used a nutrient solution maintained at 1,000 ppm TDS. The test result suggests that the ideal concentration of CMT in the system is 1,000 ppm. Within the optimum manure tea concentration, the small-scale integrated hydroponics-AWB produced romaine lettuce with growth parameters comparable to conventional hydroponics. In addition, increasing the CMT concentration to 1,400 ppm negatively impacts the plant growth parameters of romaine lettuce. The developed small-scale integrated hydroponics-AWB system provides a viable approach for growing lettuce using animal waste as the major source of nutrients. The developed production system could help mitigate the negative environmental effects of improper handling and disposal of animal waste and dependence on chemical-based nutrient solutions in hydroponic crop production.

  • Albina, P., Durban, N., Bertron, A., Albrecht, A., Robinet, J. C., & Erable, B. (2019). Influence of hydrogen electron donor, alkaline pH, and high nitrate concentrations on microbial denitrification: A review. International Journal of Molecular Sciences, 20(20), Article 5163. https://doi.org/10.3390/ijms20205163

  • Al-Gheethi, A. A., Efaq, A. N., Bala, J. D., Norli, I., Abdel-Monem, M. O., & Ab. Kadir, M. O. (2018). Removal of pathogenic bacteria from sewage-treated effluent and biosolids for agricultural purposes. Applied Water Science, 8(2), Article 74. https://doi.org/10.1007/s13201-018-0698-6

  • Ashworth, A. J., Chastain, J. P., & Moore Jr, P. A. (2020). Nutrient characteristics of poultry manure and litter. In H. M. Waldrip, P. H. Pagliari & Z. He (Eds.), Animal Manure: Production, Characteristics, Environmental Concerns, and Management (pp. 15-26). John Wiley & Sons. https://doi.org/10.2134/asaspecpub67.c5

  • Atkin, K., & Nichols, M. A. (2004). Organic hydroponics. Acta Horticulturae, 648, 121–127. https://doi.org/10.17660/ActaHortic.2004.648.14

  • Béline, F., Daumer, M. L., Loyon, L., Pourcher, A. M., Dabert, P., Guiziou, F., & Peu, P. (2008). The efficiency of biological aerobic treatment of piggery wastewater to control nitrogen, phosphorus, pathogen and gas emissions. Water Science and Technology, 57(12), 1909–1914. https://doi.org/10.2166/wst.2008.316

  • Bi, G., Evans, W. B., Spiers, J. M., & Witcher, A. L. (2010). Effects of organic and inorganic fertilizers on marigold growth and flowering. HortScience, 45(9), 1373–1377.

  • Blanchard, C., Wells, D. E., Pickens, J. M., & Blersch, D. M. (2020). Effect of pH on cucumber growth and nutrient availability in a decoupled aquaponic system with minimal solids removal. Horticulturae, 6(1), Article 10. https://doi.org/10.3390/horticulturae6010010

  • Borlaug, N. E. (2019). Using plants to meet world food needs. In R. G. Woods (Ed.), Future Dimensions of World Food and Population (pp. 101–182). CRC Press.

  • Bradford, G. E. (1999). Contributions of animal agriculture to meeting global human food demand. Livestock Production Science, 59(2), 95–112. https://doi.org/10.1016/S0301-6226(99)00019-6

  • Chia, S. Y., & Lim, M. W. (2022). A critical review on the influence of humidity for plant growth forecasting. IOP Conference Series: Materials Science and Engineering, 1257(1), Article 012001. https://doi.org/10.1088/1757-899X/1257/1/012001

  • Collins, E., Barker, J. C., Carr, L. E., Brodie, H. L., & Martin, J. H. (1999). Poultry waste management handbook. Natural Resource, Agriculture, and Engineering Service.

  • De Clercq, M., Vats, A., & Biel, A. (2018). Agriculture 4.0: The future of farming technology. Oliver Wyman.

  • EPA. (2015). Dissolved Oxygen. United States Environmental Protection Agency. https://www.epa.gov/caddis-vol2/dissolved-oxygen

  • Ferrarezi, R. S., & Testezlaf, R. (2016). Performance of wick irrigation system using self-compensating troughs with substrates for lettuce production. Journal of Plant Nutrition, 39(1), 147–161. https://doi.org/10.1080/01904167.2014.983127

  • Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10(Part A), 4–10. https://doi.org/10.1016/j.wace.2015.08.001

  • Horrigan, L., Lawrence, R. S., & Walker, P. (2002). How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environmental Health Perspectives, 110(5), 445–456. https://doi.org/10.1289/ehp.02110445

  • Hu, Y., Sampat, A. M., Ruiz-Mercado, G. J., & Zavala, V. M. (2019). Logistics network management of livestock waste for Spatiotemporal control of nutrient pollution in water bodies. ACS Sustainable Chemistry & Engineering, 7(22), 18359–18374. https://doi.org/10.1021/acssuschemeng.9b03920

  • Khoshnevisan, B., Duan, N., Tsapekos, P., Awasthi, M. K., Liu, Z., Mohammadi, A., Angelidaki, I., Tsang, D. CW., Zhang, Z., Pan, J., Ma, L., Aghbashlo, M., Tabatabaei, M., & Liu, H. (2021). A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives. Renewable and Sustainable Energy Reviews, 135, Article 110033. https://doi.org/10.1016/j.rser.2020.110033

  • Kleinhenz, M. D., & Bumgarner, N. R. (2012). Using Brix as an Indicator of Vegetable Quality: Fact Sheet Agriculture and Natural Resources. The Ohio State University. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://u.osu.edu/vegprolab/files/2015/10/HYG_1650_12_0-1evpdsw.pdf

  • Koga, N. (2008). An energy balance under a conventional crop rotation system in northern Japan: Perspectives on fuel ethanol production from sugar beet. Agriculture, Ecosystems & Environment, 125(1), 101–110. https://doi.org/10.1016/j.agee.2007.12.002

  • Koul, B., Yakoob, M., & Shah, M. P. (2022). Agricultural waste management strategies for environmental sustainability. Environmental Research, 206, Article 112285. https://doi.org/10.1016/j.envres.2021.112285

  • Lei, C., & Engeseth, N. J. (2021). Comparison of growth characteristics, functional qualities, and texture of hydroponically grown and soil-grown lettuce. Lwt-Food Science and Technology, 150, Article 111931. https://doi.org/10.1016/j.lwt.2021.111931

  • Monsees, H., Suhl, J., Paul, M., Kloas, W., Dannehl, D., & Würtz, S. (2019). Lettuce (Lactuca sativa, variety Salanova) production in decoupled aquaponic systems: Same yield and similar quality as in conventional hydroponic systems but drastically reduced greenhouse gas emissions by saving inorganic fertilizer. PLoS One, 14(6), Article e0218368. https://doi.org/10.1371/journal.pone.0218368

  • Morgan, J. B., & Connolly, E. L. (2013). Plant-soil interactions: Nutrient uptake. Nature Education Knowledge, 4(8), Article 2.

  • Mou, B. (2012). Nutritional quality of lettuce. Current Nutrition & Food Science, 8(3), 177–187. https://doi.org/10.2174/157340112802651121

  • Mupambwa, H. A., Namwoonde, A. S., Liswaniso, G. M., Hausiku, M. K., & Ravindran, B. (2019). Biogas digestates are not an effective nutrient solution for hydroponic tomato (Lycopersicon esculentum L.) production under a deep water culture system. Heliyon, 5(10), Article e02736. https://doi.org/10.1016/j.heliyon.2019.e02736

  • Ren, F., Sun, N., Misselbrook, T., Wu, L., Xu, M., Zhang, F., & Xu, W. (2022). Responses of crop productivity and reactive nitrogen losses to the application of animal manure to China’s main crops: A meta-analysis. Science of The Total Environment, 850, Article 158064. https://doi.org/10.1016/j.scitotenv.2022.158064

  • Sace, C. F., & Jr Natividad, E. P. (2015). Economic analysis of an urban vertical garden for hydroponic production of lettuce (Lactuca sativa). International Journal of Contemporary Applied Sciences, 2(7), 42–56.

  • Savci, S. (2012). Investigation of effect of chemical fertilizers on environment. Apcbee Procedia, 1, 287–292. https://doi.org/10.1016/j.apcbee.2012.03.047

  • Shinohara, M., Aoyama, C., Fujiwara, K., Watanabe, A., Ohmori, H., Uehara, Y., & Takano, M. (2011). Microbial mineralization of organic nitrogen into nitrate to allow the use of organic fertilizer in hydroponics. Soil Science and Plant Nutrition, 57(2), 190–203. https://doi.org/10.1080/00380768.2011.554223

  • Siddiqui, Z., Hagare, D., Chen, Z. H., Jayasena, V., Shahrivar, A. A., Panatta, O., Liang, W., & Boyle, N. (2022). Growing lettuce and cucumber in a hydroponic system using food waste derived organic liquid fertiliser. Environmental Sustainability, 5(3), 325–334. https://doi.org/10.1007/s42398-022-00234-9

  • Spiertz, J. H. J., & Ewert, F. (2009). Crop production and resource use to meet the growing demand for food, feed and fuel: Opportunities and constraints. NJAS: Wageningen Journal of Life Sciences, 56(4), 281–300. https://doi.org/10.1016/S1573-5214(09)80001-8

  • Stenstrom, M. K., & Poduska, R. A. (1980). The effect of dissolved oxygen concentration on nitrification. Water Research, 14(6), 643–649. https://doi.org/10.1016/0043-1354(80)90122-0

  • Stouvenakers, G., Dapprich, P., Massart, S., & Jijakli, M. H. (2019). Plant pathogens and control strategies in aquaponics. In S. Goddek, A. Joyce, B. Kotzen & G. M. Burnell (Eds.), Aquaponics Food Production Systems (pp. 353–378). Springer.

  • Thakulla, D., Dunn, B., Hu, B., Goad, C., & Maness, N. (2021). Nutrient solution temperature affects growth and °brix parameters of seventeen lettuce cultivars grown in an NFT hydroponic system. Horticulturae, 7(9), Article 321. https://doi.org/10.3390/horticulturae7090321

  • Tibbitts, T. W., & Bottenberg, G. (1976). Growth of lettuce under controlled humidity levels 1. Journal of the American Society for Horticultural Science, 101(1), 70–73. https://doi.org/10.21273/JASHS.101.1.70

  • Tikasz, P., MacPherson, S., Adamchuk, V., & Lefsrud, M. (2019). Aerated chicken, cow, and turkey manure extracts differentially affect lettuce and kale yield in hydroponics. International Journal of Recycling of Organic Waste in Agriculture, 8(3), 241–252. https://doi.org/10.1007/s40093-019-0261-y

  • Torres, E., Sayco, T., Cinense, M., Fabula, J., Mateo, W., & Somera, C. G. (2023). Development of an organic fertilizer bioreactor for the bioconversion of dried chicken manure into organic liquid solution. International Journal of Agricultural Technology, 19(3), 1359–1378.

  • Valin, H., Sands, R. D., van der Mensbrugghe, D., Nelson, G. C., Ahammad, H., Blanc, E., Bodirsky, B., Fujimori, S., Hasegawa, T., Havlik, P., Heyhoe, E., Kyle, P., Mason-D’Croz, D., Paltsev, S., Rolinski, S., Tabeau, A., van Meijl, H., von Lampe, M., & Willenbockel, D. (2014). The future of food demand: Understanding differences in global economic models. Agricultural Economics, 45(1), 51–67. https://doi.org/10.1111/agec.12089

  • Waldrip, H. M., Pagliari, P. H., & He, Z. (2020). Animal manure: Production, characteristics, environmental concerns, and management. John Wiley & Sons. https://doi.org/10.2134/asaspecpub67

  • Wongkiew, S., Koottatep, T., Polprasert, C., Prombutara, P., Jinsart, W., & Khanal, S. K. (2021). Bioponic system for nitrogen and phosphorus recovery from chicken manure: Evaluation of manure loading and microbial communities. Waste Management, 125, 67–76. https://doi.org/10.1016/j.wasman.2021.02.014

  • Zandvakili, O. R., Barker, A. V., Hashemi, M., & Etemadi, F. (2019). Biomass and nutrient concentration of lettuce grown with organic fertilizers. Journal of Plant Nutrition, 42(5), 444-457. https://doi.org/10.1080/01904167.2019.1567778

  • Zhang, H., Vocasek, F., Antonangelo, J., & Gillespie, C. (2020). Temporal changes of manure chemical compositions and environmental awareness in the Southern Great Plains. In H. M. Waldrip, P. H. Pagliari & Z. He (Eds.), Animal Manure: Production, Characteristics, Environmental Concerns, and Management (pp. 15-26). John Wiley & Sons.

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

JST-4354-2023

Download Full Article PDF

Share this article

Related Articles