PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 48 (1) Jan. 2025 / JTAS-2996-2023

 

Principal Component Analysis of Physicochemical Parameters and Microstructure Characteristics of Wampee Fruit Affected by Storage Temperatures

Hai Wang, Feilong Yin, Shurou Chen, Ting Wei, Ziyi Qin, Jing Li, Xia Li, Xinhong Dong and Hock Eng Khoo

Pertanika Journal of Tropical Agricultural Science, Volume 48, Issue 1, January 2025

DOI: https://doi.org/10.47836/pjtas.48.1.01

Keywords: Antioxidant, cold storage, oxygen radical, preservation, subtropical fruit

Published on: 27 January 2025

This study investigates the positive effect of two storage temperatures on physicochemical characteristics, texture and structure of wampee fruits. The fruits were treated by storing them at low (10°C) and room temperature (25°C) for eight days. The results showed that the low-temperature (10°C) treatment compared to the room temperature storage could reduce fruit decay rate and weight loss, inhibit O2− production rate, maintain higher total soluble solids, and slower increment in total flavonoids and phenolics. Principal component analysis (PCA) and partial least squares regression analysis further showed that weight loss was positively correlated with the content of total phenolics and flavonoids. The changes in the physiological indicators of the fruits were notably affected by storage temperature, especially in the early storage stages. Texture properties analysis indicated that the hardness and chewiness of the fruit at the low temperature (10°C) were significantly better than that at 25°C. Fruit colour values (L*, C* and h angle) of fruits at 10°C were also remarkably higher than that at 25°C. All the results suggested that low-temperature storage was a convenient and effective method to maintain the quality of the wampee and extend its shelf life compared to room temperature.

  • Cai, Y., Yu, M., Xing, H., Di, H., Pei, J., Xu, F., & Zheng, Y. (2010). Effects of low temperature conditioning on chilling injury and quality of cold-stored juicy peach fruit. Transactions of the Chinese Society of Agricultural Engineering, 26(6), 334-338. https://doi.org/10.3969/j.issn.1002-6819.2010.06.058

    Cao, J., Kang, C., Chen, Y., Karim, N., Wang, Y., & Sun, C. (2020). Physiochemical changes in Citrus reticulata cv. Shatangju fruit during vesicle collapse. Postharvest Biology and Technology, 165, 111180. https://doi.org/10.1016/j.postharvbio.2020.111180

    Carmona, L., Alquézar, B., Marques, V. V., & Peña, L. (2017). Anthocyanin biosynthesis and accumulation in blood oranges during postharvest storage at different low temperatures. Food Chemistry, 237, 7-14. https://doi.org/10.1016/j.foodchem.2017.05.076

    da Silva, E. P., de Freitas, F. A., Carvalho, E. E. N., Junior, L. C. C., de Freitas, M. S. L., Calderaro, F. L., Damiani, C., & de Barros Vilas Boas, E. V. (2021). Effect of storage temperature on the quality of marolo fruit (Annona crassiflora Mart) “in natura”. Research, Society and Development, 10(6), e4110615446. https://doi.org/10.33448/rsd-v10i6.15446

    Ghasemnezhad, M., Sherafati, M., & Payvast, G. A. (2011). Variation in phenolic compounds, ascorbic acid and antioxidant activity of five coloured bell pepper (Capsicum annum) fruits at two different harvest times. Journal of Functional Foods, 3(1), 44-49. https://doi.org/10.1016/j.jff.2011.02.002

    Granados, C., Acevedo, D., Cabeza, A., & Lozano, A. (2014). Texture profile analysis in bananas Pelipita, Hartón and Topocho. Información Tecnológica, 25(5), 35-40. https://doi.org/10.4067/S0718-07642014000500006

    Hong, K., Xu, H., Wang, J., Zhang, L., Hu, H., Jia, Z., Gu, H., He, Q., & Gong, D. (2013). Quality changes and internal browning developments of summer pineapple fruit during storage at different temperatures. Scientia Horticulturae, 151, 68-74. https://doi.org/10.1016/j.scienta.2012.12.016

    Karadeniz, F., Burdurlu, H. S., Koca, N., & Soyer, Y. (2005). Antioxidant activity of selected fruits and vegetables grown in Turkey. Turkish Journal of Agriculture and Forestry, 29(4), 297-303.

    Li, X., Li, M., Han, C., Jin, P., & Zheng, Y. (2017). Increased temperature elicits higher phenolic accumulation in fresh-cut pitaya fruit. Postharvest Biology and Technology, 129, 90-96. https://doi.org/10.1016/j.postharvbio.2017.03.014

    Ma, J., Zhou, Z., Li, K., Li, K., Liu, L., Zhang, W., Xu, J., Tu, X., Du, L., & Zhang, H. (2021). Novel edible coating based on shellac and tannic acid for prolonging postharvest shelf life and improving overall quality of mango. Food Chemistry, 354, 129510. https://doi.org/10.1016/j.foodchem.2021.129510

    Maalekuu, K., Elkind, Y., Leikin-Frenkel, A., Lurie, S., & Fallik, E. (2006). The relationship between water loss, lipid content, membrane integrity and LOX activity in ripe pepper fruit after storage. Postharvest Biology and Technology, 42(3), 248-255. https://doi.org/10.1016/j.postharvbio.2006.06.012

    Meng, X. C., Huang, Z. P., Fan, C., & Lu, Y. S. (2021). Effects of storage temperature on the preservation period and quality of seedless wampee fruit. Journal of Food Safety and Quality, 12(21), 8530-8535. https://doi.org/10.19812/j.cnki.jfsq11-5956/ts.2021.21.033

    Morales, J., Bermejo, A., Besada, C., Navarro, P., Gil, R., Hernando, I., & Salvador, A. (2020). Physicochemical changes and chilling injury disorders in ‘Tango’ mandarins stored at low temperatures. Journal of the Science of Food and Agriculture, 100(6), 2750-2760. https://doi.org/10.1002/jsfa.10307

    Mphaphuli, T., Slabbert, R. M., & Sivakumar, D. (2020). Storage temperature and time changes of phenolic compounds and antioxidant properties of Natal plum (Carissa macrocarpa). Food Bioscience, 38, 100772. https://doi.org/10.1016/j.fbio.2020.100772

    Mullen, W., Stewart, A. J., Lean, M. E., Gardner, P., Duthie, G. G., & Crozier, A. (2002). Effect of freezing and storage on the phenolics, ellagitannins, flavonoids, and antioxidant capacity of red raspberries. Journal of Agricultural and Food Chemistry, 50(18), 5197-5201. https://doi.org/10.1021/jf020141f

    Požrl, T., Žnidarčič, D., Kopjar, M., Hribar, J., & Simčič, M. (2010). Change of textural properties of tomatoes due to storage and storage temperatures. Journal of Food Agriculture and Environment, 8(2), 292-296. https://doi.org/10.1234/4.2010.1655

    Qin, Z., Pan, J., Li, J., Sun, J., Khoo, H. E., & Dong, X. (2022). Effects of 1-methylcyclopropene and abscisic acid treatments on texture properties and microstructures of postharvest tangerine (Citrus reticulata cv. Orah). Journal of Food Processing and Preservation, 46(7), e16633. https://doi.org/10.1111/jfpp.16633

    Sanchez, P. D. C., Hashim, N., Shamsudin, R., & Nor, M. Z. M. (2021). Effects of different storage temperatures on the quality and shelf life of Malaysian sweet potato (Ipomoea Batatas L.) varieties. Food Packaging and Shelf Life, 28, 100642. https://doi.org/10.1016/j.fpsl.2021.100642

    Shao, Y., Jiang, Z., Zeng, J., Li, W., & Dong, Y. (2020). Effect of ethanol fumigation on pericarp browning associated with phenol metabolism, storage quality, and antioxidant systems of wampee fruit during cold storage. Food Science & Nutrition, 8(7), 3380-3388. https://doi.org/10.1002/fsn3.1617

    Singh, K. K., & Reddy, B. S. (2006). Post-harvest physico-mechanical properties of orange peel and fruit. Journal of Food Engineering, 73(2), 112-120. https://doi.org/10.1016/j.jfoodeng.2005.01.010

    Singh, V., Guizani, N., Al-Alawi, A., Claereboudt, M., & Rahman, M. S. (2013). Instrumental texture profile analysis (TPA) of date fruits as a function of its physico-chemical properties. Industrial Crops and Products, 50, 866-873. https://doi.org/10.1016/j.indcrop.2013.08.039

    Suntornsuk, L., Gritsanapun, W., Nilkamhank, S., & Paochom, A. (2002). Quantitation of vitamin C content in herbal juice using direct titration. Journal of Pharmaceutical and Biomedical Analysis, 28(5), 849-855. https://doi.org/10.1016/S0731-7085(01)00661-6

    Teixeira, G. H., Durigan, J. F., Santos, L. O., Hojo, E. T., & Cunha Junior, L. C. (2011). Changes in the quality of jaboticaba fruit (Myriciaria jaboticaba (Vell) Berg. cv. Sabará) stored under different oxygen concentrations. Journal of the Science of Food and Agriculture, 91(15), 2844-2849. https://doi.org/10.1002/jsfa.4530

    Wang, J., You, Y., Chen, W., Xu, Q., Wang, J., Liu, Y., Song, L., & Wu, J. (2015). Optimal hypobaric treatment delays ripening of honey peach fruit via increasing endogenous energy status and enhancing antioxidant defence systems during storage. Postharvest Biology and Technology, 101, 1-9. https://doi.org/10.1016/j.postharvbio.2014.11.004

    Wang, Q., Wei, Y., Chen, X., Xu, W., Wang, N., Xu, F., Wang, H., & Shao, X. (2020). Postharvest strategy combining maturity and storage temperature for 1-MCP-treated peach fruit. Journal of Food Processing and Preservation, 44(4), e14388. https://doi.org/10.1111/jfpp.14388

    Xu, H., Qiao, P., Pan, J., Qin, Z., Li, X., Khoo, H. E., & Dong, X. (2023). CaCl2 treatment effectively delays postharvest senescence of passion fruit. Food Chemistry, 417, 135786. https://doi.org/10.1016/j.foodchem.2023.135786

    Yang, Z., Zheng, Y., Cao, S., Tang, S., Ma, S., & Li, N. A. (2007). Effects of storage temperature on textural properties of Chinese bayberry fruit. Journal of Texture Studies, 38(1), 166-177. https://doi.org/10.1111/j.1745-4603.2007.00092.x

    Zeng, J. K., Jiang, Z. T., Li, W., Zhang, L. B., & Shao, Y. Z. (2020). Effects of uv-c irradiation on postharvest quality and antioxidant properties of wampee fruit (Clausena lansium (Lour.) skeels) during cold storage. Fruits, 75(1), 36-43. https://doi.org/10.17660/th2020/75.1.4

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JTAS-2996-2023

Download Full Article PDF

Share this article

Related Articles