PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Aharoni, A., & Galili, G. (2011). Metabolic engineering of the plant primary-secondary metabolism interface. Current Opinion in Biotechnology, 22(2), 239–244. https://doi.org/10.1016/j.copbio.2010.11.004

  • Ahmed, A. S., Fanokh, A. K. M., & Mahdi, M. A. (2019). Phytochemical identification and antioxidant study of essential oil constituents of Ocimum basilicum L. growing in Iraq. Pharmacognosy Journal, 11(4), 724–729. https://doi.org/10.5530/pj.2019.11.115

  • Al-Maawali, S. S., Al-Sadi, A. M., Alsheriqi, S. A. K., Al-Sabahi, J. N., & Velazhahan, R. (2021). The potential of antagonistic yeasts and bacteria from tomato phyllosphere and fructoplane in the control of Alternaria fruit rot of tomato. All Life, 14(1), 34-48. https://doi.org/10.1080/26895293.2020.1858975

  • Benelli, G., Pavela, R., Maggi, F., Wandjou, J. G. N., Fofie, N. G. B. Y., Koné-Bamba, D., Sagratini, G., Vittori, S., & Caprioli, G. (2019). Insecticidal activity of the essential oil and polar extracts from Ocimum gratissimum grown in Ivory Coast: Efficacy on insect pests and vectors and impact on non-target species. Industrial Crops and Products, 132, 377-385. https://doi.org/10.1016/j.indcrop.2019.02.047

  • Bensaid, A., Boudard, F., Servent, A., Morel, S., Portet, K., Guzman, C., Vitou, M., Bichon, F., & Poucheret, P. (2022). Differential nutrition-health properties of Ocimum basilicum leaf and stem extracts. Foods, 11(12), 1699. https://doi.org/10.3390/foods11121699

  • Berenbaum, M., & Feeny, P. (1981). Toxicity of angular furanocoumarins to swallowtail butterflies: Escalation in a coevolutionary arms race? Science, 212(4497), 927–929. https://doi.org/10.1126/science.212.4497.927

  • Boulamtat, R., Mesfioui, A., El-Fakhouri, K., Oubayoucef, A., Sabraoui, A., Aasfar, A., & El-Bouhssini, M. (2021). Chemical composition, and insecticidal activities of four plant essential oils from Morocco against larvae of Helicoverpa armigera (Hub.) under field and laboratory conditions. Crop Protection, 144, 105607. https://doi.org/10.1016/j.cropro.2021.105607

  • Brito, V. D., Achimón, F., Dambolena, J. S., Pizzolitto, R. P., & Zygadlo, J. A. (2019). Trans-2-hexen-1-ol as a tool for the control of Fusarium verticillioides in stored maize grains. Journal of Stored Products Research, 82, 123–130. https://doi.org/10.1016/j.jspr.2019.05.002

  • Cavalier-Smith, T. (2007). Origins of secondary metabolism. In D. J. Chadwick & J. Whelan (Eds.), Ciba Foundation Symposium 171 ‐ Secondary Metabolites: Their Function and Evolution (pp. 64-87). Ciba Foundation. https://doi.org/10.1002/9780470514344.ch5

  • Chaaban, S. B., Hamdi, S. H., Mahjoubi, K., & Jemâa, J. M. B. (2019). Composition and insecticidal activity of essential oil from Ruta graveolens, Mentha pulegium and Ocimum basilicum against Ectomyelois ceratoniae Zeller and Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Journal of Plant Diseases and Protection, 126, 237-246. https://doi.org/10.1007/s41348-019-00218-8

  • Chaudhary, A., Bala, K., Thakur, S., Kamboj, R., & Dumra, N. (2018). Plant defenses against herbivorous insects: A review. International Journal of Chemical Studies, 6(5), 681–688.

  • Chen, W., & Viljoen, A. M. (2010). Geraniol — A review of a commercially important fragrance material. South African Journal of Botany, 76(4), 643–651. https://doi.org/10.1016/j.sajb.2010.05.008

  • da Silva Moura, E., D’Antonino Faroni, L. R., Heleno, F. F., Rodrigues, A. A. Z., Prates, L. H. F., & de Queiroz, M. E. L. R. (2020). Optimal extraction of Ocimum basilicum essential oil by association of ultrasound and hydrodistillation and its potential as a biopesticide against a major stored grains pest. Molecules, 25(12), 2781. https://doi.org/10.3390/molecules25122781

  • Dahibhate, N. L., Dwivedi, P., & Kumar, K. (2022). GC–MS and UHPLC-HRMS based metabolite profiling of Bruguiera gymnorhiza reveals key bioactive compounds. South African Journal of Botany, 149, 1044-1048. https://doi.org/10.1016/j.sajb.2022.02.004

  • Dancewicz, K., Szumny, A., Wawrzeńczyk, C., & Gabryś, B. (2020). Repellent and antifeedant activities of citral-derived lactones against the peach potato aphid. International Journal of Molecular Sciences, 21(21), 8029. https://doi.org/10.3390/ijms21218029

  • Dangol, S., Poudel, D. K., Ojha, P. K., Maharjan, S., Poudel, A., Satyal, R., Rokaya, A., Timsina, S., Dosoky, N. S., Satyal, P., & Setzer, W. N. (2023). Essential oil composition analysis of Cymbopogon species from eastern Nepal by GC-MS and chiral GC-MS, and antimicrobial activity of some major compounds. Molecules, 28(2), 543. https://doi.org/10.3390/molecules28020543

  • de Oliveira, E. R., Alves, D. S., Carvalho, G. A., de Oliveira, B. M. R. G., Aazza, S., & Bertolucci, S. K. V. (2018). Toxicity of Cymbopogon flexuosus essential oil and citral for Spodoptera frugiperda. Ciência e Agrotecnologia, 42(4), 408–419. https://doi.org/10.1590/1413-70542018424013918

  • de Sena Filho, J. G., de Almeida, A. S., Pinto-Zevallos, D., Barreto, I. C., de Holanda Cavalcanti, S. C., Nunes, R., Teodoro, A. V., Xavier, H. S., Filho, J. M. B., Guan, L., Neves, A. L. A., & Duringer, J. M. (2023). From plant scent defense to biopesticide discovery: Evaluation of toxicity and acetylcholinesterase docking properties for Lamiaceae monoterpenes. Crop Protection, 164, 106126. https://doi.org/10.1016/j.cropro.2022.106126

  • Dmitruk, M., Sulborska, A., Żuraw, B., Stawiarz, E., & Weryszko-Chmielewska, E. (2019). Sites of secretion of bioactive compounds in leaves of Dracocephalum moldavica L.: Anatomical, histochemical, and essential oil study. Brazilian Journal of Botany, 42, 701–715. https://doi.org/10.1007/s40415-019-00559-6

  • Džamić, A. M., Soković, M. D., Ristić, M. S., Grujić, S. M., Mileski, K. S., & Marin, P. D. (2014). Chemical composition, antifungal and antioxidant activity of Pelargonium graveolens essential oil. Journal of Applied Pharmaceutical Science, 4(3), 1–5. https://doi.org/10.7324/JAPS.2014.40301

  • Erb, M., & Kliebenstein, D. J. (2020). Plant secondary metabolites as defenses, regulators, and primary metabolites: The blurred functional trichotomy. Plant Physiology, 184(1), 39–52. https://doi.org/10.1104/PP.20.00433

  • Farag, M. A., Ezzat, S. M., Salama, M. M., & Tadros, M. G. (2016). Anti-acetylcholinesterase potential and metabolome classification of 4 Ocimum species as determined via UPLC/qTOF/MS and chemometric tools. Journal of Pharmaceutical and Biomedical Analysis, 125, 292-302. https://doi.org/10.1016/j.jpba.2016.03.037

  • Fürstenberg-Hägg, J., Zagrobelny, M., & Bak, S. (2013). Plant defense against insect herbivores. International Journal of Molecular Sciences, 14(5), 10242-10297. https://doi.org/10.3390/ijms140510242

  • Gang, D. R., Beuerle, T., Ullmann, P., Werck-Reichhart, D., & Pichersky, E. (2002). Differential production of meta hydroxylated phenylpropanoids in sweet basil peltate glandular trichomes and leaves is controlled by the activities of specific acyltransferases and hydroxylases. Plant Physiology, 130(3), 1536–1544. https://doi.org/10.1104/pp.007146

  • Gonzáles, W. L., Negritto, M. A., Suárez, L. H., & Gianoli, E. (2008). Induction of glandular and non-glandular trichomes by damage in leaves of Madia sativa under contrasting water regimes. Acta Oecologica, 33(1), 128-132. https://doi.org/10.1016/j.actao.2007.10.004

  • Govindarajan, M., Sivakumar, R., Rajeswary, M., & Yogalakshmi, K. (2013). Chemical composition and larvicidal activity of essential oil from Ocimum basilicum (L.) against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae). Experimental Parasitology, 134(1), 7-11. https://doi.org/10.1016/j.exppara.2013.01.018

  • Hadacek, F., Bachmann, G., Engelmeier, D., & Chobot, V. (2011). Hormesis and a chemical raison d’être for secondary plant metabolites. Dose-Response, 9(1). https://doi.org/10.2203/dose-response.09-028.Hadacek

  • Iijima, Y., Gang, D. R., Fridman, E., Lewinsohn, E., & Pichersky, E. (2004). Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiology, 134(1), 370–379. https://doi.org/10.1104/pp.103.032946

  • Ilmiah, H. H., Nuringtyas, T. R., & Nugroho, L. H. (2018). Accumulation of potential photo-protective compound groups in mangrove (Sonneratia caseolaris (L.) Engler.) leaves. Pharmacognosy Journal, 10(3), 576–580. https://doi.org/10.5530/pj.2018.3.94

  • Jönsson, M., & Anderson, P. (1999). Electrophysiological response to herbivore-induced host plant volatiles in the moth Spodoptera littoralis. Physiological Entomology, 24(4), 377–385. https://doi.org/10.1046/j.1365-3032.1999.00154.x

  • Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 28(1), 27–30.

  • Kariyat, R. R., Smith, J. D., Stephenson, A. G., De Moraes, C. M., & Mescher, M. C. (2017). Non-glandular trichomes of Solanum carolinense deter feeding by Manduca sexta caterpillars and cause damage to the gut peritrophic matrix. Proceedings of the Royal Society B: Biological Sciences, 284, 20162323. https://doi.org/10.1098/rspb.2016.2323

  • Kayesth, S., Gupta, K. K., Kumar, S., & Shazad, M. (2018). Effects of Ocimum sanctum hexane extract on survival and development of Dysdercus koenigii Fabricius (Heteroptera: Pyrrhocoriedae). Archives of Phytopathology and Plant Protection, 51(17–18), 993–1007. https://doi.org/10.1080/03235408.2018.1541148

  • Krzysko-Łupicka, T., Walkowiak, W., & Bialon, M. (2019). Comparison of the fungistatic activity of selected essential oils relative to Fusarium graminearum isolates. Molecules, 24(2), 311. https://doi.org/10.3390/molecules24020311

  • Lessire, R., & Stumpf, P. K. (1983). Nature of the fatty acid synthetase systems in parenchymal and epidermal cells of Allium porrum L. leaves. Plant Physiology, 73(3), 614-618. https://doi.org/10.1104/pp.73.3.614

  • Lewinsohn, E., Dudai, N., Tadmor, K., Katzir, I., Ravid, U., Putievsky, E., & Joels, D. M. (1998). Histochemical localization of citral accumulation in lemongrass leaves (Cymbopogon citratus (DC.) Stapf., Poaceae). Annals of Botany, 81(1), 35–39. https://doi.org/10.1006/anbo.1997.0525

  • Luthra, R., Srivastava, A. K., & Ganjewala, D. (2017). Histochemical localisation of citral accumulating cite in lemongrass (Cymbopogon flexuosus Ness Ex. Steud) wats cultivar OD-19. Asian Journal of Plant Science, 6, 419–422. https://doi.org/10.3923/ajps.2007.419.422

  • Marotti, M., Piccaglia, R., & Giovanelli, E. (1996). Differences in essential oil composition of Basil (Ocimum basilicum L.) Italian cultivars related to morphological characteristics. Journal of Agricultural and Food Chemistry, 44(12), 3926–3929. https://doi.org/10.1021/jf9601067

  • Martin, C., Bhatt, K., & Baumann, K. (2001). Shaping in plant cells. Current Opinion in Plant Biology, 4(6), 540–549. https://doi.org/10.1016/S1369-5266(00)00213-2

  • Miano, R. N., Ayelo, P. M., Musau, R., Hassanali, A., & Mohamed, S. A. (2022). Electroantennogram and machine learning reveal a volatile blend mediating avoidance behavior by Tuta absoluta females to a wild tomato plant. Scientific Reports, 12, 8965. https://doi.org/10.1038/s41598-022-13125-0

  • Murata, J., & De Luca, V. (2005). Localization of tabersonine 16‐hydroxylase and 16‐OH tabersonine‐16‐O‐methyltransferase to leaf epidermal cells defines them as a major site of precursor biosynthesis in the vindoline pathway in Catharanthus roseus. The Plant Journal, 44(4), 581-594. https://doi.org/10.1111/j.1365-313X.2005.02557.x

  • Murata, J., Roepke, J., Gordon, H., & De Luca, V. (2008). The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell, 20(3), 524–542. https://doi.org/10.1105/tpc.107.056630

  • Nuringtyas, T. R., Choi, Y. H., Verpoorte, R., Klinkhamer, P. G. L., & Leiss, K. A. (2012). Differential tissue distribution of metabolites in Jacobaea vulgaris, Jacobaea aquatica and their crosses. Phytochemistry, 78, 89–97. https://doi.org/10.1016/j.phytochem.2012.03.011

  • Peiffer, M., Tooker, J. F., Luthe, D. S., & Felton, G. W. (2009). Plants on early alert: Glandular trichomes as sensors for insect herbivores. New Phytologist, 184(3), 644–656. https://doi.org/10.1111/j.1469-8137.2009.03002.x

  • Quan, M., Liu, Q. Z., & Liu, Z. L. (2018). Identification of insecticidal constituents from the essential oil from the aerial parts Stachys riederi var. japonica. Molecules, 23(5), 1200. https://doi.org/10.3390/molecules23051200

  • Rahmani, S., & Azimi, S. (2020). Fumigant toxicity of three Satureja species on tomato leafminers, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Toxin Reviews, 40(4), 724-735. https://doi.org/10.1080/15569543.2020.1767651

  • Rautio, P., Markkola, A., Martel, J., Tuomi, J., Härmä, E., Kuikka, K., Siitonen, A., Riesco, I. L., & Roitto, M. (2002). Developmental plasticity in birch leaves: Defoliation causes a shift from glandular to nonglandular trichomes. Oikos, 98(3), 437-446. https://doi.org/10.1034/j.1600-0706.2002.980308.x

  • Sá, R. D., Santana, A. S. C. O., Silva, F. C. L., Soares, L. A. L., & Randau, K. P. (2016). Anatomical and histochemical analysis of Dysphania ambrosioides supported by light and electron microscopy. Revista Brasileira de Farmacognosia, 26(5), 533–543. https://doi.org/10.1016/j.bjp.2016.05.010

  • Singh, P., Jayaramaiah, R. H., Sarate, P., Thulasiram, H. V., Kulkarni, M. J., & Giri, A. P. (2014). Insecticidal potential of defense metabolites from Ocimum kilimandscharicum against Helicoverpa armigera. PLOS One, 9(8), e0104377. https://doi.org/10.1371/journal.pone.0104377

  • Sletvold, N., Huttunen, P., Handley, R., Kärkkäinen, K., & Ågren, J. (2010). Cost of trichome production and resistance to a specialist insect herbivore in Arabidopsis lyrata. Evolutionary Ecology, 24, 1307–1319. https://doi.org/10.1007/s10682-010-9381-6

  • Sneha, K., Narayanankutty, A., Job, J. T., Olatunji, O. J., Alfarhan, A., Famurewa, A. C., & Ramesh, V. (2022). Antimicrobial and larvicidal activities of different Ocimum essential oils extracted by ultrasound-assisted hydrodistillation. Molecules, 27(5), 1456. https://doi.org/10.3390/molecules27051456

  • Srivastava, S., Adholeya, A., Conlan, X. A., & Cahill, D. M. (2016). Acidic potassium permanganate chemiluminescence for the determination of antioxidant potential in three cultivars of Ocimum basilicum. Plant Foods for Human Nutrition, 71, 72-80. https://doi.org/10.1007/s11130-016-0527-8

  • Tian, D., Tooker, J., Peiffer, M., Chung, S. H., & Felton, G. W. (2012). Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta, 236, 1053–1066. https://doi.org/10.1007/s00425-012-1651-9

  • Traw, M. B., & Bergelson, J. (2003). Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiology, 133(3), 1367–1375. https://doi.org/10.1104/pp.103.027086

  • van Schie, C. C. N., Haring, M. A., & Schuurink, R. C. (2007). Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Molecular Biology, 64, 251–263. https://doi.org/10.1007/s11103-007-9149-8

  • Wang, X., Shen, C., Meng, P., Tan, G., & Lv, L. (2021). Analysis and review of trichomes in plants. BMC Plant Biology, 21, 70. https://doi.org/10.1186/s12870-021-02840-x

  • War, A. R., Taggar, G. K., Hussain, B., Taggar, M. S., Nair, R. M., & Sharma, H. C. (2018). Special issue: using non-model systems to explore plant-pollinator and plant-herbivore interactions: plant defence against herbivory and insect adaptations. AoB PLANTS, 10(4), ply037. https://doi.org/10.1093/aobpla/ply037

  • Xie, Z., Kapteyn, J., & Gang, D. R. (2008). A systems biology investigation of the MEP/terpenoid and shikimate/phenylpropanoid pathways points to multiple levels of metabolic control in sweet basil glandular trichomes. The Plant Journal, 54(3), 349–361. https://doi.org/10.1111/j.1365-313X.2008.03429.x

  • Zhandi, W., La, Z., Bailian, D., Yundong, S., Yani, W., Guangqiu, L., & Lin, J. (2021). Regulation of pakchoi’s secondary metabolites on the behavior of female Plutella xylostella (Lepidoptera: Plutellidae). Chinese Journal of Pesticide Science, 23(2), 323-330. https://doi.org/10.16801/j.issn.1008-7303.2021.0016

  • Zhang, X. G., Li, X., Gao, Y. L., Liu, Y., Dong, W. X., & Xiao, C. (2019). Oviposition deterrents in larval frass of potato tuberworm moth, Phthorimaea operculella (Lepidoptera: Gelechiidae). Neotropical Entomology, 48, 496-502. https://doi.org/10.1007/s13744-018-0655-y

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles