e-ISSN 2231-8542
ISSN 1511-3701
J
Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Abdelrhman, A. M., Leong, M. S., Hee, L. M., & Hui, K. H. (2014). Vibration analysis of multi stages rotor for blade faults diagnosis. Advanced Materials Research, 845, 133-137. https://doi.org/10.4028/www.scientific.net/AMR.845.133
Barnard, I. (2006). Asset management - An insurance perspective. In Engineering Asset Management (pp. 44-53). Springer.
Chang, C. C., & Chen, L. W. (2004). Damage detection of cracked thick rotating blades by a spatial wavelet based approach. Applied Acoustics, 65(11), 1095-1111. https://doi.org/10.1016/j.apacoust.2004.03.006
Kuo, R. J. (1995). Intelligent diagnosis for turbine blade faults using artificial neural networks and fuzzy logic. Engineering Applications of Artificial Intelligence, 8(1), 25-34. https://doi.org/10.1016/0952-1976(94)00082-X
Kyriazis, A., Aretakis, N., & Mathioudakis, K. (2006). Gas turbine fault diagnosis from fast response data using probabilistic methods and information fusion. In Turbo Expo: Power for Land, Sea, and Air (Vol. 42371, pp. 571-579). ASME Publishing.
Lim, M. H., & Ngui, W. K. (2015, July 12-16). Diagnosis of twisted blade in rotor system. In 22nd International Congress on Sound and Vibration. Florence, Italy.
Lim, M. H., & Leong, M. S. (2013). Detection of early faults in rotating machinery based on wavelet analysis. Advances in Mechanical Engineering, 2013, Article 625863. https://doi.org/10.1155/2013/625863
Marsh. (2016). March power and utilities market update. Marsh LLC. https://www.marsh.com/pr/en/industries/energy-and-power/insights/marsh-power-and-utilities-market-update-2016.html
Ngui, W. K., Leong, M. S., Shapiai, M. I., & Lim, M. H. (2017). Blade fault diagnosis using artificial neural network. International Journal of Applied Engineering Research, 12(4), 519-526.
Pang, S., Yang, X., Zhang, X., & Lin, X. (2020). Fault diagnosis of rotating machinery with ensemble kernel extreme learning machine based on fused multi-domain features. ISA Transactions, 98, 320-337. https://doi.org/10.1016/j.isatra.2019.08.053
Peng, Z., Chu, F., & He, Y. (2002). Vibration signal analysis and feature extraction based on reassigned wavelet scalogram. Journal of Sound and Vibration, 253(5), 1087-1100. https://doi.org/10.1006/jsvi.2001.4085
Tiboni, M., Remino, C., Bussola, R., & Amici, C. (2022). A Review on vibration-based condition monitoring of rotating machinery. Applied Sciences, 12(3), Article 972. https://doi.org/10.3390/app12030972
Wang, Q., & Chu, F. (2001). Experimental determination of the rubbing location by means of acoustic emission and wavelet transform. Journal of Sound and Vibration, 248(1), 91-103. https://doi.org/10.1006/jsvi.2001.3676
ISSN 1511-3701
e-ISSN 2231-8542