e-ISSN 2231-8542
ISSN 1511-3701
Jun Hoe Tay, Norhayu Asib, Nor Azwady Abd Aziz and Geok Hun Tan
Pertanika Journal of Tropical Agricultural Science, Volume 46, Issue 2, May 2023
DOI: https://doi.org/10.47836/pjtas.46.2.06
Keywords: Biodegradation, expanded polystyrene, extruded polystyrene, superworms, supplements, Zophobas atratus
Published on: 16 May 2023
Polystyrene waste pollutes the environment and poses a significant health risk to humans, animals, and marine ecology. This study aims to evaluate the effectiveness of degradation on expanded (EPS) and extruded (XPS) polystyrene with different diets using superworms (Zophobas atratus larvae) obtained in Malaysia. The growth and development of the larvae after consumption of EPS and XPS and the gut microbial community changes in response to high polystyrene consumption diets were also identified. The oatmeal, wheat bran, and cornmeal were used as supplement diets and showed significantly enhanced EPS and XPS consumption and degradation compared to sole diet treatment. Gel permeation chromatography was carried out using egested frass of Z.atratus larvae to characterize depolymerization of EPS and XPS, indicating a significant reduction in the average molecular weight and average molecular weight. The highest reduction occurred in the presence of oatmeal. Proton nuclear magnetic resonance and Fourier transform infrared spectroscopy analyses indicated functional group changes and chemical modification occurred with depolymerization and partial oxidation of EPS and XPS. The larvae length increased, while the number of instars and duration of larvae became shorter with the addition of supplement diets. Oatmeal is predominantly effective among other supplements in assisting Z.atratus larvae with EPS and XPS degradation. The results of this study support the ubiquity of polystyrene biodegradation in Z.atratus and the next-generation sequencing studies. Kluyvera sp., Klebsiella sp., and Enterobacter sp. were found to be strongly associated with degrading EPS and XPS polystyrene with oatmeal as a supplemental diet.
Brandon, A. M., Gao, S. H., Tian, R., Ning, D., Yang, S. S., Zhou, J., Wu, W. M., & Criddle, C. S. (2018). Biodegradation of polyethylene and plastic mixtures in mealworms (larvae of Tenebrio molitor) and effects on the gut microbiome. Environmental Science and Technology, 52(11), 6526-6533. https://doi.org/10.1021/acs.est.8b02301
Chojnacka, K., Mikula, K., Izydorczyk, G., Skrzypczak, D., Witek-Krowiak, A., Gersz, A., Moustakas., K., & Korczyński, M. (2021). Innovative high digestibility protein feed materials reducing environmental impact through improved nitrogen-use efficiency in sustainable agriculture. Journal of Environmental Management, 291, 112693. https://doi.org/10.1016/j.jenvman.2021.112693
Emaleku, S. A., Omueti O. O., & Emaleku, G. O. (2018). Talinum triangulare whole wheat meal fortified with soy flour consumed with Talinum triangulare (gbure) soup glycemic index and the test human subjects’ lipid profiles. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 12(6), 831-837. https://doi.org/10.1016/j.dsx.2017.08.007
Esperk, T., Tammaru, T., & Nylin, S. (2007). Intraspecific variability in number of larval instars in insects. Journal of Economic Entomology, 100(3), 627-645. https://doi.org/10.1603/0022-0493(2007)100[627:ivinol]2.0.co;2
Farmer III, J. J. (2015). Kluyvera. In Bergey’s manual of systematics of archaea and bacteria. John Wiley & Sons, Inc. and Bergey’s Manual Trust. https://doi.org/10.1002/9781118960608.gbm01151
Fu, K. H., Yeung, C. H., Hung, S. C., & To, C. Y. (2020). Two wrongs could make a right: Food waste compost accelerated polystyrene consumption of Tenebrio molitor. Journal of Emerging Investigators, 3, 1-7.
Gao, H. L., Li, H. T., Zhang, L., & Hao, M. J. (2010). Effects of Tenebrio molitor L. larva decomposing polystyrene foam. Advanced Materials Research, 113-116, 1972-1975. https://doi.org/10.4028/www.scientific.net/AMR.113-116.1972
Georgakopoulos, A. (2003). Study of low rank Greek coals using FTIR spectroscopy. Energy Sources, 25(10), 995–1005. https://doi.org/10.1080/00908310390232442
Hendrichs, J., Pereira, R. & Vreysen, M. J. (Eds.) (2021). Area-wide integrated pest management: Development and field application. CRC Press. https://doi.org/10.1201/9781003169239
Herman, V., Takacs, H., Duclairoir, F., Renault, O., Tortai, J. H., & Viala, B. (2015). Core double–shell cobalt/graphene/polystyrene magnetic nanocomposites synthesized by in situ sonochemical polymerization. RSC Advances, 5(63), 51371-51381. https://doi.org/10.1039/C5RA06847A
Hu, L., Xia, M., Lin, X., Xu, C., Li, W, Wang, J., Zeng, R., & Song, Y. (2018). Earthworm gut bacteria increase silicon bioavailability and acquisition by maize. Soil Biology and Biochemistry, 125, 215-221. https://doi.org/10.1016/j.soilbio.2018.07.015
Jang, S., & Kikuchi, Y. (2020). Impact of the insect gut microbiota on ecology, evolution, and industry. Current Opinion in Insect Science, 41, 33-39. https://doi.org/10.1016/j.cois.2020.06.004
Jiang, S., Su, T., Zhao, J., & Wang, Z. (2021). Biodegradation of polystyrene by Tenebrio molitor, Galleria mellonella, and Zophobas atratus larvae and comparison of their degradation effects. Polymers, 13(20), 3539. https://doi.org/10.3390/polym13203539
Kaleka, A. S., Kaur, N., & Bali, G. P. (2019). Larval development and molting. In H. Mikkola (Ed.), Edible insects. IntechOpen. https://doi.org/10.5772/intechopen.85530
Khoo, K. S., Ho, L. Y., Lim, H. R., Leong, H. Y., & Chew, K. W. (2021). Plastic waste associated with the COVID-19 pandemic: Crisis or opportunity?. Journal of Hazardous Materials, 417, 126108. https://doi.org/10.1016/j.jhazmat.2021.126108
Kim, S. Y., Kim, H. G., Song, S. H., & Kim, N. J. (2015). Developmental characteristics of Zophobas atratus (Coleoptera: Tenebrionidae) larvae in different instars. International Journal of Industrial Entomology, 30(2), 45-49. https://doi.org/10.7852/ijie.2015.30.2.45
Kissin, Y. V. (1995). Molecular weight distributions of linear polymers: Detailed analysis from GPC data. Journal of Polymer Science Part A: Polymer Chemistry, 33(2), 227-237. https://doi.org/10.1002/pola.1995.080330205
Kristek, A., Schär, M. Y., Soycan, G., Alsharif, S., Kuhnle, G. G. C., Walton, G., & Spencer, J. P. E. (2018). The gut microbiota and cardiovascular health benefits: A focus on wholegrain oats. Nutrition Bulletin, 43(4), 358-373. https://doi.org/10.1111/nbu.12354
Kundungal, H., Synshiang, K., & Devipriya, S. P. (2021). Biodegradation of polystyrene wastes by a newly reported honey bee pest Uloma sp. larvae: An insight to the ability of polystyrene-fed larvae to complete its life cycle. Environmental Challenges, 4, 100083. https://doi.org/10.1016/j.envc.2021.100083
Leitão-Gonçalves, R., Carvalho-Santos, Z., Francisco, A. P., Fioreze, G. T., Anjos, M., Baltazar, C., Elias, A. P., Itskov, P. M., Piper, M. D. W., & Ribeiro, C. (2017). Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLOS Biology, 15(4), e2000862. https://doi.org/10.1371/journal.pbio.2000862
Lin, H. H., & Liu, H. H. (2021). FTIR analysis of biodegradation of polystyrene by intestinal bacteria isolated from Zophobas morio and Tenebrio molitor. Proceedings of Engineering and Technology Innovation, 17, 50-57. https://doi.org/10.46604/peti.2021.5450
Liu, X. (2021). 1H NMR spectra and interpretation (Part I). https://batch.libretexts.org/print/url=https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Organic_Chemistry_I_(Liu)/06%3A_Structural_Identification_of_Organic_Compounds-_IR_and_NMR_Spectroscopy/6.06%3A_H_NMR_Spectra_and_Interpretation_(Part_I).pdf
Lopes, F. M., Batista, K. A., Batista, G. L., Mitidieri, S., Bataus, L. A. M., & Fernandes, K. F. (2010). Biodegradation of epoxyconazole and piraclostrobin fungicides by Klebsiella sp. from soil. World Journal of Microbiology and Biotechnology, 26(7), 1155-1161. https://doi.org/10.1007/s11274-009-0283-0
Lou, Y., Ekaterina, P., Yang, S., Lu, B., Liu, B.-F., Ren, N., Corvini, P., & Xing, D. (2020). Biodegradation of polyethylene and polystyrene by greater wax moth larvae (Galleria mellonella L.) and the effect of co-diet supplementation on the core gut microbiome. Environmental Science and Technology, 54(5), 2821-2831. https://doi.org/10.1021/acs.est.9b07044
Lou, Y., Li, Y., Lu, B., Liu, Q., Yang, S. S., Liu, B., Ren, N., Wu, W. M., & Xing, D. (2021). Response of the yellow mealworm (Tenebrio molitor) gut microbiome to diet shifts during polystyrene and polyethylene biodegradation. Journal of Hazardous Materials, 416, 126222. https://doi.org/10.1016/j.jhazmat.2021.126222
Machona, O., Chidzwondo, F., & Mangoyi, R. (2022). Tenebrio molitor: Possible source of polystyrene-degrading bacteria. BMC Biotechnology, 22, 2. https://doi.org/10.1186/s12896-021-00733-3
Maintinguer, S. I., Lazaro, C. Z., Pachiega, R., Varesche, M. B. A., Sequinel, R., & de Oliveira, J. E. (2017). Hydrogen bioproduction with Enterobacter sp. isolated from brewery wastewater. International Journal of Hydrogen Energy, 42(1), 152-160. https://doi.org/10.1016/j.ijhydene.2016.11.104
Matyja, K., Rybak, J., Hanus-Lorenz, B., Wróbel, M., & Rutkowski, R. (2020). Effects of polystyrene diet on Tenebrio molitor larval growth, development and survival: Dynamic Energy Budget (DEB) model analysis. Environmental Pollution, 264, 114740. https://doi.org/10.1016/j.envpol.2020.114740
McHargue, J. S. (1920). The cause of deterioration and spoiling of corn and corn meal. Industrial and Engineering Chemistry, 12(3), 257-262. https://doi.org/10.1021/ie50123a019
Mlček, J., Adámek, M., Adámková, A., Matyáš, J., Bučková, M., Mrázková, M., Vicha, R., Vychodil, R., Knížková, I., & Volek, Z. (2021). Feed parameters influencing the breeding of mealworms (Tenebrio molitor). Sustainability, 13(23), 12992. https://doi.org/10.3390/su132312992
Mohanan, N., Montazer, Z., Sharma, P. K., & Levin, D. B. (2020). Microbial and enzymatic degradation of synthetic plastics. Frontiers in Microbiology, 11, 580709. https://doi.org/10.3389/fmicb.2020.580709
Morales-Ramos, J. A., Rojas, M. G., Shapiro-Ilan, D. I., & Tedders, W. L. (2010). Developmental plasticity in Tenebrio molitor (Coleoptera: Tenebrionidae): Analysis of instar variation in number and development time under different diets. Journal of Entomological Science, 45(2), 75-90. https://doi.org/10.18474/0749-8004-45.2.75
Onwulata, C. I., Phillips, J. G., Tunick, M. H., Qi, P. X., & Cooke, P. H. (2010). Texturized dairy proteins. Journal of Food Science, 75(2), E100–E109. https://doi.org/10.1111/j.1750-3841.2009.01473.x
Oonincx, D. G., van Broekhoven, S., van Huis, A., & van Loon, J. J. A. (2019). Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLOS One, 14(10), e0222043. https://doi.org/10.1371/journal.pone.0222043
Ortiz, J. C., Ruiz, A. T., Morales-Ramos, J. A., Thomas, M., Rojas, M. G., Tomberlin, J. K., Yi, L., Han, R., Giroud, L., & Jullien, R. L. (2016). Insect mass production technologies. In Insects as sustainable food ingredients: Production, processing and food application (pp. 153-201). Academic Press. https://doi.org/10.1016/B978-0-12-802856-8.00006-5
Peña-Pascagaza, P. M., López-Ramírez, N. A., & Ballen-Segura, M. A. (2020). Tenebrio molitor and its gut bacteria growth in polystyrene (PS) presence as the sole source carbon. Universitas Scientiarum, 25(1), 37–53. https://doi.org/10.11144/javeriana.sc25-1.tmai
Peng, B.-Y., Li, Y., Fan, R., Chen, Z., Chen., J., Brandon, A. M., Criddle, C. C., Zhang, Y., & Wu, W.-M. (2020). Biodegradation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Tenebrionidae): Broad and limited extent depolymerization. Environmental Pollution, 266(Part 1), 115206. https://doi.org/10.1016/j.envpol.2020.115206
Peng, B.-Y., Su, Y., Chen, Z., Chen, J., Zhou, X., Benbow, M. E., Criddle, C. C., Wu, W.-M., & Zhang, Y. (2019). Biodegradation of polystyrene by dark (Tenebrio obscurus) and yellow (Tenebrio molitor) mealworms (Coleoptera: Tenebrionidae). Environmental Science and Technology, 53(9), 5256-5265. https://doi.org/10.1021/acs.est.8b06963
Peng, B.-Y., Sun, Y., Wu, Z., Chen, J., Shen, Z., Zhou, X., Wu, W.-M., & Zhang, Y. (2022). Biodegradation of polystyrene and low-density polyethylene by Zophobas atratus larvae: Fragmentation into microplastics, gut microbiota shift, and microbial functional enzymes. Journal of Cleaner Production, 367, 132987. https://doi.org/10.1016/j.jclepro.2022.132987
Pivato, A. F., Miranda, G. M., Prichula, J., Lima, J. E. A., Ligabue, R. A., Seixas, A., & Trentin, D. S. (2022). Hydrocarbon-based plastics: Progress and perspectives on consumption and biodegradation by insect larvae. Chemosphere, 293, 133600. https://doi.org/10.1016/j.chemosphere.2022.133600
Rasane, P., Jha, A., Sabikhi, L., Kumar, A., & Unnikrishnan, V. S. (2015). Nutritional advantages of oats and opportunities for its processing as value added foods - A review. Journal of Food Science and Technology, 52, 662–675. https://doi.org/10.1007/s13197-013-1072-1
Rho, M. S., & Lee, K. P. (2022). Behavioural and physiological regulation of protein and carbohydrates in mealworm larvae: A geometric analysis. Journal of Insect Physiology, 136, 104329. https://doi.org/10.1016/j.jinsphys.2021.104329
Ribeiro, N., Abelho, M., & Costa, R. (2018). A review of the scientific literature for optimal conditions for mass rearing Tenebrio molitor (Coleoptera: Tenebrionidae). Journal of Entomological Science, 53(4), 434-454. https://doi.org/10.18474/jes17-67.1
Rumbos, C. I., & Athanassiou, C. G. (2021). The superworm, Zophobas morio (Coleoptera: Tenebrionidae): A ‘Sleeping Giant’ in nutrient sources. Entomological Society of America, 21(2), 13. https://doi.org/10.1093/jisesa/ieab014
Ruschioni, S., Loreto, N., Foligni, R., Mannozzi, C., Raffaelli, N., Zamporlini, F., Pasquini, M., Roncolini, A., Cardinali, F., Osimani, A., Aquilanti, L., Isidoro, N., Riolo, P., & Mozzon, M. (2020). Addition of olive pomace to feeding substrate affects growth performance and nutritional value of mealworm (Tenebrio molitor L.) larvae. Foods, 9(3), 317. https://doi.org/10.3390/foods9030317
Saygin, H., & Baysal, A. (2021). Insights into the degradation behavior of submicroplastics by Klebsiella pneumoniae. Journal of Polymers and the Environment, 29(3), 958-966. https://doi.org/10.1007/s10924-020-01929-y
Sekhar, V. C., Nampoothiri, K. M., Mohan, A. J., Nimisha, R. N., Thallada, B., & Pandey, A. (2016). Microbial degradation of high impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide. Journal of Hazardous Materials, 318, 347-354. https://doi.org/10.1016/j.jhazmat.2016.07.008
Shanmugam, V., Das, O., Neisiany, R. E., Babu, K., Singh, S., Hedenqvist, M. S., Berto, F., & Ramakrishna, S. (2020). Polymer recycling in additive manufacturing: An opportunity for the circular economy. Materials Circular Economy, 2, 11. https://doi.org/10.1007/s42824-020-00012-0
Singh, B., Mal, G., Gautam, S. K., & Mukesh, M. (2019). Insect gut - A treasure of microbes and microbial enzymes. In Advances in Animal Biotechnology (pp. 51-58). Springer. https://doi.org/10.1007/978-3-030-21309-1_5
Sun, J., Prabhu, A., Aroney, S., & Rinke, C. (2022). Insights into plastic biodegradation: Community composition and functional capabilities of the superworm (Zophobas morio) microbiome in styrofoam feeding trials. https://www.biorxiv.org/content/10.1101/2022.05.16.492041v1.full
Thushari, G. G. N., & Senevirathna, J. D. M. (2020). Plastic pollution in the marine environment. Heliyon, 6(8), e04709. https://doi.org/10.1016/j.heliyon.2020.e04709
Turner, A. (2020). Foamed polystyrene in the marine environment: Sources, additives, transport, behavior, and impacts. Environmental Science and Technology, 54(17), 10411-10420. https://doi.org/10.1021/acs.est.0c03221
Umamaheswari, S., & Murali, M. (2013). FTIR spectroscopic study of fungal degradation of poly (ethylene terephthalate) and polystyrene foam. Chemical Engineering, 64, 19159-19164.
Urbanek, A. K., Rybak, J., Wróbel, M., Leluk, K., & Mirończuk, A. M. (2020). A comprehensive assessment of microbiome diversity in Tenebrio molitor fed with polystyrene waste. Environmental Pollution, 262, 114281. https://doi.org/10.1016/j.envpol.2020.114281
Yang, J., Yang, Y., Wu, W. M., Zhao, J., & Jiang, L. (2014). Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environmental Science and Technology, 48(23), 13776–13784. https://doi.org/10.1021/es504038a
Yang, L., Gao, J., Liu, Y., Zhuang, G., Peng, X., Wu, W. M., & Zhuang, X. (2021). Biodegradation of expanded polystyrene and low-density polyethylene foams in larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae): Broad versus limited extent depolymerization and microbe-dependence versus independence. Chemosphere, 262, 127818. https://doi.org/10.1016/j.chemosphere.2020.127818
Yang, S.-S., & Wu, W.-M. (2020). Biodegradation of plastics in Tenebrio genus (mealworms). In D. He & Y. Luo (Eds.), Microplastics in terrestrial environments: The handbook of environmental chemistry (Vol. 95, pp. 385-422). Springer. https://doi.org/10.1007/698_2020_457
Yang, S.-S., Brandon, A. M., Flanagan, J. C. A., Yang, J., Ning, D., Cai, S.-Y., Fan, H.-Q., Wang, Z.-Y., Ren, J., Eric, B., Ren, N.-Q., Waymouth, R. M., Zhou, J., Criddle, C. S., & Wu, W.-M. (2018). Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere, 191, 979-989. https://doi.org/10.1016/j.chemosphere.2017.10.117
Yang, S.-S., Ding, M.-Q., He, L., Zhang, C.-H., Li, Q.-X., Xing, D.-F., Cao, G.-L., Zhao, L., Ding, J., Ren, N.-Q., & Wu, W.-M. (2021). Biodegradation of polypropylene by yellow mealworms (Tenebrio molitor) and superworms (Zophobas atratus) via gut-microbe-dependent depolymerization. Science of The Total Environment, 756, 144087. https://doi.org/10.1016/j.scitotenv.2020.144087
Yang, S.-S., Wu, W.-M., Brandon, A. M., Fan, H.-Q., Receveur, J. P., Li, Y., Wang, Z.-Y., Fan, R., McClellan, R., Gao, S.-H., Ning., D., Philips, D. H., Peng, B.-Y., Wang, H., Cai, S.-Y., Li, P., Cai, W.-W., Ding, L.-Y., Yang, J., … Criddle, C. S. (2018). Ubiquity of polystyrene digestion and biodegradation within yellow mealworms, larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Chemosphere, 212, 262-271. https://doi.org/10.1016/j.chemosphere.2018.08.078
Yang, Y., Wang, J., & Xia, M. (2020). Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Science of the Total Environment, 708, 135233. https://doi.org/10.1016/j.scitotenv.2019.135233
Yang, Y., Yang, J., Wu, W.-M., Zhao, J., Song, Y., Gao, L., Yang, R., & Jiang, L. (2015). Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 2. Role of gut microorganisms. Environmental Science Technology, 49(20), 12087-12093. https://doi.org/10.1021/acs.est.5b02663
Zhou, D., Chen, J., Wu, J., Yang, J., & Wang, H. (2021). Biodegradation and catalytic-chemical degradation strategies to mitigate microplastic pollution. Sustainable Materials and Technologies, 28, e00251. https://doi.org/10.1016/j.susmat.2021.e00251
Zhou, J. Z., Mary, A. B., & James, M. T. (1996). DNA recovery from soils of diverse composition. Applied and Environmental Microbiology, 62(2), 316-322. https://doi.org/10.1128/aem.62.2.316-322.1996
Brandon, A. M., Gao, S. H., Tian, R., Ning, D., Yang, S. S., Zhou, J., Wu, W. M., & Criddle, C. S. (2018). Biodegradation of polyethylene and plastic mixtures in mealworms (larvae of Tenebrio molitor) and effects on the gut microbiome. Environmental Science and Technology, 52(11), 6526-6533. https://doi.org/10.1021/acs.est.8b02301
Chojnacka, K., Mikula, K., Izydorczyk, G., Skrzypczak, D., Witek-Krowiak, A., Gersz, A., Moustakas., K., & Korczyński, M. (2021). Innovative high digestibility protein feed materials reducing environmental impact through improved nitrogen-use efficiency in sustainable agriculture. Journal of Environmental Management, 291, 112693. https://doi.org/10.1016/j.jenvman.2021.112693
Emaleku, S. A., Omueti O. O., & Emaleku, G. O. (2018). Talinum triangulare whole wheat meal fortified with soy flour consumed with Talinum triangulare (gbure) soup glycemic index and the test human subjects’ lipid profiles. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 12(6), 831-837. https://doi.org/10.1016/j.dsx.2017.08.007
Esperk, T., Tammaru, T., & Nylin, S. (2007). Intraspecific variability in number of larval instars in insects. Journal of Economic Entomology, 100(3), 627-645. https://doi.org/10.1603/0022-0493(2007)100[627:ivinol]2.0.co;2
Farmer III, J. J. (2015). Kluyvera. In Bergey’s manual of systematics of archaea and bacteria. John Wiley & Sons, Inc. and Bergey’s Manual Trust. https://doi.org/10.1002/9781118960608.gbm01151
Fu, K. H., Yeung, C. H., Hung, S. C., & To, C. Y. (2020). Two wrongs could make a right: Food waste compost accelerated polystyrene consumption of Tenebrio molitor. Journal of Emerging Investigators, 3, 1-7.
Gao, H. L., Li, H. T., Zhang, L., & Hao, M. J. (2010). Effects of Tenebrio molitor L. larva decomposing polystyrene foam. Advanced Materials Research, 113-116, 1972-1975. https://doi.org/10.4028/www.scientific.net/AMR.113-116.1972
Georgakopoulos, A. (2003). Study of low rank Greek coals using FTIR spectroscopy. Energy Sources, 25(10), 995–1005. https://doi.org/10.1080/00908310390232442
Hendrichs, J., Pereira, R. & Vreysen, M. J. (Eds.) (2021). Area-wide integrated pest management: Development and field application. CRC Press. https://doi.org/10.1201/9781003169239
Herman, V., Takacs, H., Duclairoir, F., Renault, O., Tortai, J. H., & Viala, B. (2015). Core double–shell cobalt/graphene/polystyrene magnetic nanocomposites synthesized by in situ sonochemical polymerization. RSC Advances, 5(63), 51371-51381. https://doi.org/10.1039/C5RA06847A
Hu, L., Xia, M., Lin, X., Xu, C., Li, W, Wang, J., Zeng, R., & Song, Y. (2018). Earthworm gut bacteria increase silicon bioavailability and acquisition by maize. Soil Biology and Biochemistry, 125, 215-221. https://doi.org/10.1016/j.soilbio.2018.07.015
Jang, S., & Kikuchi, Y. (2020). Impact of the insect gut microbiota on ecology, evolution, and industry. Current Opinion in Insect Science, 41, 33-39. https://doi.org/10.1016/j.cois.2020.06.004
Jiang, S., Su, T., Zhao, J., & Wang, Z. (2021). Biodegradation of polystyrene by Tenebrio molitor, Galleria mellonella, and Zophobas atratus larvae and comparison of their degradation effects. Polymers, 13(20), 3539. https://doi.org/10.3390/polym13203539
Kaleka, A. S., Kaur, N., & Bali, G. P. (2019). Larval development and molting. In H. Mikkola (Ed.), Edible insects. IntechOpen. https://doi.org/10.5772/intechopen.85530
Khoo, K. S., Ho, L. Y., Lim, H. R., Leong, H. Y., & Chew, K. W. (2021). Plastic waste associated with the COVID-19 pandemic: Crisis or opportunity?. Journal of Hazardous Materials, 417, 126108. https://doi.org/10.1016/j.jhazmat.2021.126108
Kim, S. Y., Kim, H. G., Song, S. H., & Kim, N. J. (2015). Developmental characteristics of Zophobas atratus (Coleoptera: Tenebrionidae) larvae in different instars. International Journal of Industrial Entomology, 30(2), 45-49. https://doi.org/10.7852/ijie.2015.30.2.45
Kissin, Y. V. (1995). Molecular weight distributions of linear polymers: Detailed analysis from GPC data. Journal of Polymer Science Part A: Polymer Chemistry, 33(2), 227-237. https://doi.org/10.1002/pola.1995.080330205
Kristek, A., Schär, M. Y., Soycan, G., Alsharif, S., Kuhnle, G. G. C., Walton, G., & Spencer, J. P. E. (2018). The gut microbiota and cardiovascular health benefits: A focus on wholegrain oats. Nutrition Bulletin, 43(4), 358-373. https://doi.org/10.1111/nbu.12354
Kundungal, H., Synshiang, K., & Devipriya, S. P. (2021). Biodegradation of polystyrene wastes by a newly reported honey bee pest Uloma sp. larvae: An insight to the ability of polystyrene-fed larvae to complete its life cycle. Environmental Challenges, 4, 100083. https://doi.org/10.1016/j.envc.2021.100083
Leitão-Gonçalves, R., Carvalho-Santos, Z., Francisco, A. P., Fioreze, G. T., Anjos, M., Baltazar, C., Elias, A. P., Itskov, P. M., Piper, M. D. W., & Ribeiro, C. (2017). Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLOS Biology, 15(4), e2000862. https://doi.org/10.1371/journal.pbio.2000862
Lin, H. H., & Liu, H. H. (2021). FTIR analysis of biodegradation of polystyrene by intestinal bacteria isolated from Zophobas morio and Tenebrio molitor. Proceedings of Engineering and Technology Innovation, 17, 50-57. https://doi.org/10.46604/peti.2021.5450
Liu, X. (2021). 1H NMR spectra and interpretation (Part I). https://batch.libretexts.org/print/url=https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Organic_Chemistry_I_(Liu)/06%3A_Structural_Identification_of_Organic_Compounds-_IR_and_NMR_Spectroscopy/6.06%3A_H_NMR_Spectra_and_Interpretation_(Part_I).pdf
Lopes, F. M., Batista, K. A., Batista, G. L., Mitidieri, S., Bataus, L. A. M., & Fernandes, K. F. (2010). Biodegradation of epoxyconazole and piraclostrobin fungicides by Klebsiella sp. from soil. World Journal of Microbiology and Biotechnology, 26(7), 1155-1161. https://doi.org/10.1007/s11274-009-0283-0
Lou, Y., Ekaterina, P., Yang, S., Lu, B., Liu, B.-F., Ren, N., Corvini, P., & Xing, D. (2020). Biodegradation of polyethylene and polystyrene by greater wax moth larvae (Galleria mellonella L.) and the effect of co-diet supplementation on the core gut microbiome. Environmental Science and Technology, 54(5), 2821-2831. https://doi.org/10.1021/acs.est.9b07044
Lou, Y., Li, Y., Lu, B., Liu, Q., Yang, S. S., Liu, B., Ren, N., Wu, W. M., & Xing, D. (2021). Response of the yellow mealworm (Tenebrio molitor) gut microbiome to diet shifts during polystyrene and polyethylene biodegradation. Journal of Hazardous Materials, 416, 126222. https://doi.org/10.1016/j.jhazmat.2021.126222
Machona, O., Chidzwondo, F., & Mangoyi, R. (2022). Tenebrio molitor: Possible source of polystyrene-degrading bacteria. BMC Biotechnology, 22, 2. https://doi.org/10.1186/s12896-021-00733-3
Maintinguer, S. I., Lazaro, C. Z., Pachiega, R., Varesche, M. B. A., Sequinel, R., & de Oliveira, J. E. (2017). Hydrogen bioproduction with Enterobacter sp. isolated from brewery wastewater. International Journal of Hydrogen Energy, 42(1), 152-160. https://doi.org/10.1016/j.ijhydene.2016.11.104
Matyja, K., Rybak, J., Hanus-Lorenz, B., Wróbel, M., & Rutkowski, R. (2020). Effects of polystyrene diet on Tenebrio molitor larval growth, development and survival: Dynamic Energy Budget (DEB) model analysis. Environmental Pollution, 264, 114740. https://doi.org/10.1016/j.envpol.2020.114740
McHargue, J. S. (1920). The cause of deterioration and spoiling of corn and corn meal. Industrial and Engineering Chemistry, 12(3), 257-262. https://doi.org/10.1021/ie50123a019
Mlček, J., Adámek, M., Adámková, A., Matyáš, J., Bučková, M., Mrázková, M., Vicha, R., Vychodil, R., Knížková, I., & Volek, Z. (2021). Feed parameters influencing the breeding of mealworms (Tenebrio molitor). Sustainability, 13(23), 12992. https://doi.org/10.3390/su132312992
Mohanan, N., Montazer, Z., Sharma, P. K., & Levin, D. B. (2020). Microbial and enzymatic degradation of synthetic plastics. Frontiers in Microbiology, 11, 580709. https://doi.org/10.3389/fmicb.2020.580709
Morales-Ramos, J. A., Rojas, M. G., Shapiro-Ilan, D. I., & Tedders, W. L. (2010). Developmental plasticity in Tenebrio molitor (Coleoptera: Tenebrionidae): Analysis of instar variation in number and development time under different diets. Journal of Entomological Science, 45(2), 75-90. https://doi.org/10.18474/0749-8004-45.2.75
Onwulata, C. I., Phillips, J. G., Tunick, M. H., Qi, P. X., & Cooke, P. H. (2010). Texturized dairy proteins. Journal of Food Science, 75(2), E100–E109. https://doi.org/10.1111/j.1750-3841.2009.01473.x
Oonincx, D. G., van Broekhoven, S., van Huis, A., & van Loon, J. J. A. (2019). Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLOS One, 14(10), e0222043. https://doi.org/10.1371/journal.pone.0222043
Ortiz, J. C., Ruiz, A. T., Morales-Ramos, J. A., Thomas, M., Rojas, M. G., Tomberlin, J. K., Yi, L., Han, R., Giroud, L., & Jullien, R. L. (2016). Insect mass production technologies. In Insects as sustainable food ingredients: Production, processing and food application (pp. 153-201). Academic Press. https://doi.org/10.1016/B978-0-12-802856-8.00006-5
Peña-Pascagaza, P. M., López-Ramírez, N. A., & Ballen-Segura, M. A. (2020). Tenebrio molitor and its gut bacteria growth in polystyrene (PS) presence as the sole source carbon. Universitas Scientiarum, 25(1), 37–53. https://doi.org/10.11144/javeriana.sc25-1.tmai
Peng, B.-Y., Li, Y., Fan, R., Chen, Z., Chen., J., Brandon, A. M., Criddle, C. C., Zhang, Y., & Wu, W.-M. (2020). Biodegradation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Tenebrionidae): Broad and limited extent depolymerization. Environmental Pollution, 266(Part 1), 115206. https://doi.org/10.1016/j.envpol.2020.115206
Peng, B.-Y., Su, Y., Chen, Z., Chen, J., Zhou, X., Benbow, M. E., Criddle, C. C., Wu, W.-M., & Zhang, Y. (2019). Biodegradation of polystyrene by dark (Tenebrio obscurus) and yellow (Tenebrio molitor) mealworms (Coleoptera: Tenebrionidae). Environmental Science and Technology, 53(9), 5256-5265. https://doi.org/10.1021/acs.est.8b06963
Peng, B.-Y., Sun, Y., Wu, Z., Chen, J., Shen, Z., Zhou, X., Wu, W.-M., & Zhang, Y. (2022). Biodegradation of polystyrene and low-density polyethylene by Zophobas atratus larvae: Fragmentation into microplastics, gut microbiota shift, and microbial functional enzymes. Journal of Cleaner Production, 367, 132987. https://doi.org/10.1016/j.jclepro.2022.132987
Pivato, A. F., Miranda, G. M., Prichula, J., Lima, J. E. A., Ligabue, R. A., Seixas, A., & Trentin, D. S. (2022). Hydrocarbon-based plastics: Progress and perspectives on consumption and biodegradation by insect larvae. Chemosphere, 293, 133600. https://doi.org/10.1016/j.chemosphere.2022.133600
Rasane, P., Jha, A., Sabikhi, L., Kumar, A., & Unnikrishnan, V. S. (2015). Nutritional advantages of oats and opportunities for its processing as value added foods - A review. Journal of Food Science and Technology, 52, 662–675. https://doi.org/10.1007/s13197-013-1072-1
Rho, M. S., & Lee, K. P. (2022). Behavioural and physiological regulation of protein and carbohydrates in mealworm larvae: A geometric analysis. Journal of Insect Physiology, 136, 104329. https://doi.org/10.1016/j.jinsphys.2021.104329
Ribeiro, N., Abelho, M., & Costa, R. (2018). A review of the scientific literature for optimal conditions for mass rearing Tenebrio molitor (Coleoptera: Tenebrionidae). Journal of Entomological Science, 53(4), 434-454. https://doi.org/10.18474/jes17-67.1
Rumbos, C. I., & Athanassiou, C. G. (2021). The superworm, Zophobas morio (Coleoptera: Tenebrionidae): A ‘Sleeping Giant’ in nutrient sources. Entomological Society of America, 21(2), 13. https://doi.org/10.1093/jisesa/ieab014
Ruschioni, S., Loreto, N., Foligni, R., Mannozzi, C., Raffaelli, N., Zamporlini, F., Pasquini, M., Roncolini, A., Cardinali, F., Osimani, A., Aquilanti, L., Isidoro, N., Riolo, P., & Mozzon, M. (2020). Addition of olive pomace to feeding substrate affects growth performance and nutritional value of mealworm (Tenebrio molitor L.) larvae. Foods, 9(3), 317. https://doi.org/10.3390/foods9030317
Saygin, H., & Baysal, A. (2021). Insights into the degradation behavior of submicroplastics by Klebsiella pneumoniae. Journal of Polymers and the Environment, 29(3), 958-966. https://doi.org/10.1007/s10924-020-01929-y
Sekhar, V. C., Nampoothiri, K. M., Mohan, A. J., Nimisha, R. N., Thallada, B., & Pandey, A. (2016). Microbial degradation of high impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide. Journal of Hazardous Materials, 318, 347-354. https://doi.org/10.1016/j.jhazmat.2016.07.008
Shanmugam, V., Das, O., Neisiany, R. E., Babu, K., Singh, S., Hedenqvist, M. S., Berto, F., & Ramakrishna, S. (2020). Polymer recycling in additive manufacturing: An opportunity for the circular economy. Materials Circular Economy, 2, 11. https://doi.org/10.1007/s42824-020-00012-0
Singh, B., Mal, G., Gautam, S. K., & Mukesh, M. (2019). Insect gut - A treasure of microbes and microbial enzymes. In Advances in Animal Biotechnology (pp. 51-58). Springer. https://doi.org/10.1007/978-3-030-21309-1_5
Sun, J., Prabhu, A., Aroney, S., & Rinke, C. (2022). Insights into plastic biodegradation: Community composition and functional capabilities of the superworm (Zophobas morio) microbiome in styrofoam feeding trials. https://www.biorxiv.org/content/10.1101/2022.05.16.492041v1.full
Thushari, G. G. N., & Senevirathna, J. D. M. (2020). Plastic pollution in the marine environment. Heliyon, 6(8), e04709. https://doi.org/10.1016/j.heliyon.2020.e04709
Turner, A. (2020). Foamed polystyrene in the marine environment: Sources, additives, transport, behavior, and impacts. Environmental Science and Technology, 54(17), 10411-10420. https://doi.org/10.1021/acs.est.0c03221
Umamaheswari, S., & Murali, M. (2013). FTIR spectroscopic study of fungal degradation of poly (ethylene terephthalate) and polystyrene foam. Chemical Engineering, 64, 19159-19164.
Urbanek, A. K., Rybak, J., Wróbel, M., Leluk, K., & Mirończuk, A. M. (2020). A comprehensive assessment of microbiome diversity in Tenebrio molitor fed with polystyrene waste. Environmental Pollution, 262, 114281. https://doi.org/10.1016/j.envpol.2020.114281
Yang, J., Yang, Y., Wu, W. M., Zhao, J., & Jiang, L. (2014). Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environmental Science and Technology, 48(23), 13776–13784. https://doi.org/10.1021/es504038a
Yang, L., Gao, J., Liu, Y., Zhuang, G., Peng, X., Wu, W. M., & Zhuang, X. (2021). Biodegradation of expanded polystyrene and low-density polyethylene foams in larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae): Broad versus limited extent depolymerization and microbe-dependence versus independence. Chemosphere, 262, 127818. https://doi.org/10.1016/j.chemosphere.2020.127818
Yang, S.-S., & Wu, W.-M. (2020). Biodegradation of plastics in Tenebrio genus (mealworms). In D. He & Y. Luo (Eds.), Microplastics in terrestrial environments: The handbook of environmental chemistry (Vol. 95, pp. 385-422). Springer. https://doi.org/10.1007/698_2020_457
Yang, S.-S., Brandon, A. M., Flanagan, J. C. A., Yang, J., Ning, D., Cai, S.-Y., Fan, H.-Q., Wang, Z.-Y., Ren, J., Eric, B., Ren, N.-Q., Waymouth, R. M., Zhou, J., Criddle, C. S., & Wu, W.-M. (2018). Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere, 191, 979-989. https://doi.org/10.1016/j.chemosphere.2017.10.117
Yang, S.-S., Ding, M.-Q., He, L., Zhang, C.-H., Li, Q.-X., Xing, D.-F., Cao, G.-L., Zhao, L., Ding, J., Ren, N.-Q., & Wu, W.-M. (2021). Biodegradation of polypropylene by yellow mealworms (Tenebrio molitor) and superworms (Zophobas atratus) via gut-microbe-dependent depolymerization. Science of The Total Environment, 756, 144087. https://doi.org/10.1016/j.scitotenv.2020.144087
Yang, S.-S., Wu, W.-M., Brandon, A. M., Fan, H.-Q., Receveur, J. P., Li, Y., Wang, Z.-Y., Fan, R., McClellan, R., Gao, S.-H., Ning., D., Philips, D. H., Peng, B.-Y., Wang, H., Cai, S.-Y., Li, P., Cai, W.-W., Ding, L.-Y., Yang, J., … Criddle, C. S. (2018). Ubiquity of polystyrene digestion and biodegradation within yellow mealworms, larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Chemosphere, 212, 262-271. https://doi.org/10.1016/j.chemosphere.2018.08.078
Yang, Y., Wang, J., & Xia, M. (2020). Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Science of the Total Environment, 708, 135233. https://doi.org/10.1016/j.scitotenv.2019.135233
Yang, Y., Yang, J., Wu, W.-M., Zhao, J., Song, Y., Gao, L., Yang, R., & Jiang, L. (2015). Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 2. Role of gut microorganisms. Environmental Science Technology, 49(20), 12087-12093. https://doi.org/10.1021/acs.est.5b02663
Zhou, D., Chen, J., Wu, J., Yang, J., & Wang, H. (2021). Biodegradation and catalytic-chemical degradation strategies to mitigate microplastic pollution. Sustainable Materials and Technologies, 28, e00251. https://doi.org/10.1016/j.susmat.2021.e00251
Zhou, J. Z., Mary, A. B., & James, M. T. (1996). DNA recovery from soils of diverse composition. Applied and Environmental Microbiology, 62(2), 316-322. https://doi.org/10.1128/aem.62.2.316-322.1996
ISSN 1511-3701
e-ISSN 2231-8542