Home / Regular Issue / JTAS Vol. 31 (S1) 2023 / JST(S)-0585-2023

 

Environmental Properties of Coconut Fiber/Reinforced Thermoplastic Starch/Beeswax Hybrid Composites

Khuganeshwaran Mogan, Ridhwan Jumaidin, Rushdan Ahmad Ilyas and Zatil Hafila Kamaruddin

Pertanika Journal of Tropical Agricultural Science, Volume 31, Issue S1, December 2023

DOI: https://doi.org/10.47836/pjst.31.S1.02

Keywords: Biodegradation, coconut fiber, soil burial, thermoplastic starch

Published on: 27 October 2023

The creation of degradable biocomposites is anticipated to alleviate the challenges of worldwide environmental contamination and resource exhaustion. The study investigates the effect of coconut fiber on the environmental properties and water affinity behavior of thermoplastic starch/beeswax composite. The biocomposites were fabricated by incorporating the coconut husk fiber range from 10 to 50 wt%. The thermoplastic starch contains cassava starch, glycerol, and beeswax. The modification of the mixture became efficient when the mixing was determined to be stronger when used as a high-pace blender to aid the mixing process. The mixture then underwent a hot compression molding method to form the mixture into the desired sample form. We can conclude from the results that samples with high fiber content absorb less water than those with no fiber content. For moisture absorption, when the fiber content increases, the ability of the fiber to moisture absorption is decreased. The thickness swelling results show that the sample shows less swelling as the fiber percentage increases. For the soil burial test, incorporating 50 wt% coconut fiber decreases the weight reduction for 4 weeks. For the water solubility test, the solubility of 50 wt% is the best. Based on the findings, integrating coconut fiber into the modified thermoplastic cassava starch increases the composite properties relative to the non-reinforcement matrix material starch.

  • Abotbina, W., Sapuan, S. M., Sultan, M. T. H., Alkbir, M. F. M., & Ilyas, R. A. (2022). Extraction, characterization, and comparison of properties of cassava bagasse and black seed fibers. Journal of Natural Fibers, 19(16), 14525-14538. https://doi.org/10.1080/15440478.2022.2068103

  • Akil, H. M., Cheng, L. W., Mohd Ishak, Z. A., Abu Bakar, A., & Abd Rahman, M. A. (2009). Water absorption study on pultruded jute fibre reinforced unsaturated polyester composites. Composites Science and Technology, 69(11-12), 1942-1948 https://doi.org/10.1016/j.compscitech.2009.04.014

  • Akil, H. M., Omar, M. F., Mazuki, A. A. M., Safiee, S., Ishak, Z. A. M., & Abu Bakar, A. (2011). Kenaf fiber reinforced composites: A review. Materials and Design, 32(8–9), 4107–4121. https://doi.org/10.1016/j.matdes.2011.04.008

  • Alawar, A., Hamed, A. M., & Al-Kaabi, K. (2009). Characterization of treated date palm tree fiber as composite reinforcement. Composites Part B: Engineering, 40(7), 601-606 https://doi.org/10.1016/j.compositesb.2009.04.018

  • Bhatnagar, R., Gupta, G., & Yadav, S. (2015). A Review on composition and properties of bagasse fibers. International Journal of Scientific & Engineering Research, 6(5), 143-147.

  • Diyana, Z. N., Jumaidin, R., Selamat, M. Z., Ghazali, I., Julmohammad, N., Huda, N., & Ilyas, R. A. (2021). Physical properties of thermoplastic starch derived from natural resources and its blends: A review. Polymers, 13(9), 5–20. https://doi.org/10.3390/polym13091396

  • Eichhorn, S. J., Baillie, C. A., Zafeiropoulos, N., Mwaikambo, L. Y., Ansell, M. P., Dufresne, A., Entwistle, K. M., Herrera-Franco, P. J., Escamilla, G. C., Groom, L., Hughes, M., Hill, C., Rials, T. G., & Wild, P. M. (2001). Current international research into cellulosic fibres and composites. Journal of Materials Science, 36(9), 2107–2131. https://doi.org/10.1023/A:1017512029696

  • Fuqua, M. A., Huo, S., & Ulven, C. A. (2012). Natural fiber reinforced composites. Polymer Reviews, 52(3–4), 259–320. https://doi.org/10.1080/15583724.2012.705409

  • Hazrati, K. Z., Sapuan, S. M., Zuhri, M. Y. M., & Jumaidin, R. (2021). Preparation and characterization of starch-based biocomposite films reinforced by Dioscorea hispida fibers. Journal of Materials Research and Technology, 15, 1342–1355. https://doi.org/10.1016/j.jmrt.2021.09.003

  • Ibrahim, M. I. J., Sapuan, S. M., Zainudin, E. S., & Zuhri, M. Y. M. (2020). Preparation and characterization of cornhusk/sugar palm fiber reinforced corn starch-based hybrid composites. Journal of Materials Research and Technology, 9(1), 200–211. https://doi.org/10.1016/j.jmrt.2019.10.045

  • Ilyas, R. A., Sapuan, S. M., Ishak, M. R., & Zainudin, E. S. (2018). Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohydrate Polymers, 202, 186–202. https://doi.org/10.1016/j.carbpol.2018.09.002

  • Jawaid, M., Khalil, A. H. P. S., Khanam, N. P., & Bakar, A. A. (2011). Hybrid composites made from oil palm empty fruit bunches/jute fibres: Water absorption, thickness swelling and density behaviours. Journal of Polymers and the Environment, 19(1), 106–109. https://doi.org/10.1007/s10924-010-0203-2

  • Joshi, S. V., Drzal, L. T., Mohanty, A. K., & Arora, S. (2004). Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing, 35(3), 371–376. https://doi.org/10.1016/j.compositesa.2003.09.016

  • Jumaidin, R., Ahmad Diah, N., Alamjuri, R. H., Ahmad Rushdan, I., & Yusof, F. A. (2021). Processing and characterisation of banana leaf fibre reinforced thermoplastic cassava starch composites. Polymers, 13(9), 1420. https://doi.org/https://doi.org/10.3390/ polym13091420

  • Jumaidin, R., Khiruddin, M. A. A., Asyul Sutan Saidi, Z., Salit, M. S., & Ilyas, R. A. (2020). Effect of cogon grass fibre on the thermal, mechanical and biodegradation properties of thermoplastic cassava starch biocomposite. International Journal of Biological Macromolecules, 146, 746–755. https://doi.org/10.1016/j.ijbiomac.2019.11.011

  • Jústiz-Smith, N. G., Virgo, G. J., & Buchanan, V. E. (2008). Potential of Jamaican banana, coconut coir and bagasse fibres as composite materials. Materials Characterization, 59(9), 1273–1278. https://doi.org/10.1016/j.matchar.2007.10.011

  • Kalka, S., Huber, T., Steinberg, J., Baronian, K., Müssig, J., & Staiger, M. P. (2014). Biodegradability of all-cellulose composite laminates. Composites Part A: Applied Science and Manufacturing, 59, 37-44. https://doi.org/10.1016/j.compositesa.2013.12.012

  • Kamaruddin, Z. H., Jumaidin, R., Kamaruddin, Z. H., Asyraf, M. R. M., Razman, M. R., & Khan, T. (2023). Effect of Cymbopogan citratus fibre on physical and impact properties of thermoplastic cassava starch/palm wax composites. Polymers, 15(10), 2364. https://doi.org/10.3390/polym15102364

  • Kilinç, A. Ç., Durmuşkahya, C., & Seydibeyoğlu, M. Ö. (2017). Natural fibers. In M. O. Seydibeyoğlu, A. K. Mohanty., & M. Misra (Eds.) Fiber technology for fiber-reinforced composites (pp. 209-235). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-101871-2.00010-2

  • Kim, S., Van Zyl, J., Johnson, J., Moghaddam, M., Tsang, L., Colliander, A., Dunbar, S., Jackson, T., Jaruwatanadilok, S., West, R., Berg, A., Caldwell, T., Cosh, M., Lopez-Baeza, E., Thibeault, M., Walker, J., Entekhabi, D., & Yueh, S. (2016, July 10-15). Surface soil moisture retrieval using L-band SMAP SAR data and its validation. [Paper presentation]. International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China. https://doi.org/10.1109/IGARSS.2016.7729028

  • Ma, X., Yu, J., & Kennedy, J. F. (2005). Studies on the properties of natural fibers-reinforced thermoplastic starch composites. Carbohydrate Polymers, 62(1), 19–24. https://doi.org/10.1016/j.carbpol.2005.07.015

  • Mansor, M. R., Salit, M. S., Zainudin, E. S., Aziz, N. A., & Ariff, H. (2015). Life cycle assessment of natural fiber polymer composites. In K. R. Hakeem, M. Jawaid., & O. Y. Alothman (Eds.) Agricultural biomass based potential materials (pp.121-141). Springer. https://doi.org/10.1007/978-3-319-13847-3_6

  • Masoodi, R., & Pillai, K. M. (2012). A study on moisture absorption and swelling in bio-based jute-epoxy composites. Journal of Reinforced Plastics and Composites, 31(5), 285–294. https://doi.org/10.0177/0731684411434654

  • Mościcki, L., Mitrus, M., Wójtowicz, A., Oniszczuk, T., Rejak, A., & Janssen, L. (2012). Application of extrusion-cooking for processing of thermoplastic starch (TPS). Food Research International, 47(2), 291-299. https://doi.org/10.1016/j.foodres.2011.07.017

  • Mubashar, A., Ashcroft, I. A., Critchlow, G. W., & Crocombe, A. D. (2009). Moisture absorption-desorption effects in adhesive joints. International Journal of Adhesion and Adhesives, 29(8), 751-760. https://doi.org/10.1016/j.ijadhadh.2009.05.001

  • Mumtaz, T., Khan, M. R., & Hassan, M. A. (2010). Study of environmental biodegradation of LDPE films in soil using optical and scanning electron microscopy. Micron, 41(5), 430-438. https://doi.org/10.1016/j.micron.2010.02.008

  • Punia Bangar, S., Nehra, M., Siroha, A. K., Petrů, M., Ilyas, R. A., Devi, U., & Devi, P. (2021). Development and characterization of physical modified pearl millet starch-based films. Foods, 10(7), 1609. https://doi.org/10.3390/foods10071609

  • Tarique, J., Sapuan, S. M., Khalina, A., Sherwani, S. F. K., Yusuf, J., & Ilyas, R. A. (2021). Recent developments in sustainable arrowroot (Maranta arundinacea Linn) starch biopolymers, fibres, biopolymer composites and their potential industrial applications: A review. Journal of Materials Research and Technology, 13, 1191–1219. https://doi.org/10.1016/j.jmrt.2021.05.047

  • Thinkohkaew, K., Rodthongkum, N., & Ummartyotin, S. (2020). Coconut husk (Cocos nucifera) cellulose reinforced poly vinyl alcohol-based hydrogel composite with control-release behavior of methylene blue. Journal of Materials Research and Technology, 9(3), 6602-6611. https://doi.org/10.1016/j.jmrt.2020.04.051

  • Väisänen, T., Das, O., & Tomppo, L. (2017). A review on new bio-based constituents for natural fiber-polymer composites. Journal of Cleaner Production, 149, 582–596. https://doi.org/10.1016/j.jclepro.2017.02.132

  • van Bavel, C. H. M. (1996). Water relations of plants and soils. Soil Science, 161(4). 257-260. https://doi.org/10.1097/00010694-199604000-00007

  • Venkatachalam, N., Navaneethakrishnan, P., Rajsekar, R., & Shankar, S. (2016). Effect of pretreatment methods on properties of natural fiber composites: A review. Polymers and Polymer Composites, 24(7), 555-566. https://doi.org/10.1177/096739111602400715

  • Wang, W., Sain, M., & Cooper, P. A. (2006). Study of moisture absorption in natural fiber plastic composites. Composites Science and Technology, 66(3), 379-386. https://doi.org/10.1016/j.compscitech.2005.07.027

  • Willett, J. L. (2009). Starch in polymer compositions. In J. BeMiller., & R. Whistler (Eds). Starch (pp. 715-743). Academic Press. https://doi.org/10.1016/B978-0-12-746275-2.00019-7

  • Yoksan, R., Boontanimitr, A., Klompong, N., & Phothongsurakun, T. (2022). Poly(lactic acid)/thermoplastic cassava starch blends filled with duckweed biomass. International Journal of Biological Macromolecules, 203, 369–378. https://doi.org/10.1016/j.ijbiomac.2022.01.159

  • Zhang, Y., Simpson, B. K., & Dumont, M. J. (2018). Effect of beeswax and carnauba wax addition on properties of gelatin films: A comparative study. Food Bioscience, 26, 88–95. https://doi.org/10.1016/j.fbio.2018.09.011

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JST(S)-0585-2023

Download Full Article PDF

Share this article

Recent Articles