PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Albina, P., Durban, N., Bertron, A., Albrecht, A., Robinet, J. C., & Erable, B. (2019). Influence of hydrogen electron donor, alkaline pH, and high nitrate concentrations on microbial denitrification: A review. International Journal of Molecular Sciences, 20(20), Article 5163. https://doi.org/10.3390/ijms20205163

  • Al-Gheethi, A. A., Efaq, A. N., Bala, J. D., Norli, I., Abdel-Monem, M. O., & Ab. Kadir, M. O. (2018). Removal of pathogenic bacteria from sewage-treated effluent and biosolids for agricultural purposes. Applied Water Science, 8(2), Article 74. https://doi.org/10.1007/s13201-018-0698-6

  • Ashworth, A. J., Chastain, J. P., & Moore Jr, P. A. (2020). Nutrient characteristics of poultry manure and litter. In H. M. Waldrip, P. H. Pagliari & Z. He (Eds.), Animal Manure: Production, Characteristics, Environmental Concerns, and Management (pp. 15-26). John Wiley & Sons. https://doi.org/10.2134/asaspecpub67.c5

  • Atkin, K., & Nichols, M. A. (2004). Organic hydroponics. Acta Horticulturae, 648, 121–127. https://doi.org/10.17660/ActaHortic.2004.648.14

  • Béline, F., Daumer, M. L., Loyon, L., Pourcher, A. M., Dabert, P., Guiziou, F., & Peu, P. (2008). The efficiency of biological aerobic treatment of piggery wastewater to control nitrogen, phosphorus, pathogen and gas emissions. Water Science and Technology, 57(12), 1909–1914. https://doi.org/10.2166/wst.2008.316

  • Bi, G., Evans, W. B., Spiers, J. M., & Witcher, A. L. (2010). Effects of organic and inorganic fertilizers on marigold growth and flowering. HortScience, 45(9), 1373–1377.

  • Blanchard, C., Wells, D. E., Pickens, J. M., & Blersch, D. M. (2020). Effect of pH on cucumber growth and nutrient availability in a decoupled aquaponic system with minimal solids removal. Horticulturae, 6(1), Article 10. https://doi.org/10.3390/horticulturae6010010

  • Borlaug, N. E. (2019). Using plants to meet world food needs. In R. G. Woods (Ed.), Future Dimensions of World Food and Population (pp. 101–182). CRC Press.

  • Bradford, G. E. (1999). Contributions of animal agriculture to meeting global human food demand. Livestock Production Science, 59(2), 95–112. https://doi.org/10.1016/S0301-6226(99)00019-6

  • Chia, S. Y., & Lim, M. W. (2022). A critical review on the influence of humidity for plant growth forecasting. IOP Conference Series: Materials Science and Engineering, 1257(1), Article 012001. https://doi.org/10.1088/1757-899X/1257/1/012001

  • Collins, E., Barker, J. C., Carr, L. E., Brodie, H. L., & Martin, J. H. (1999). Poultry waste management handbook. Natural Resource, Agriculture, and Engineering Service.

  • De Clercq, M., Vats, A., & Biel, A. (2018). Agriculture 4.0: The future of farming technology. Oliver Wyman.

  • EPA. (2015). Dissolved Oxygen. United States Environmental Protection Agency. https://www.epa.gov/caddis-vol2/dissolved-oxygen

  • Ferrarezi, R. S., & Testezlaf, R. (2016). Performance of wick irrigation system using self-compensating troughs with substrates for lettuce production. Journal of Plant Nutrition, 39(1), 147–161. https://doi.org/10.1080/01904167.2014.983127

  • Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10(Part A), 4–10. https://doi.org/10.1016/j.wace.2015.08.001

  • Horrigan, L., Lawrence, R. S., & Walker, P. (2002). How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environmental Health Perspectives, 110(5), 445–456. https://doi.org/10.1289/ehp.02110445

  • Hu, Y., Sampat, A. M., Ruiz-Mercado, G. J., & Zavala, V. M. (2019). Logistics network management of livestock waste for Spatiotemporal control of nutrient pollution in water bodies. ACS Sustainable Chemistry & Engineering, 7(22), 18359–18374. https://doi.org/10.1021/acssuschemeng.9b03920

  • Khoshnevisan, B., Duan, N., Tsapekos, P., Awasthi, M. K., Liu, Z., Mohammadi, A., Angelidaki, I., Tsang, D. CW., Zhang, Z., Pan, J., Ma, L., Aghbashlo, M., Tabatabaei, M., & Liu, H. (2021). A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives. Renewable and Sustainable Energy Reviews, 135, Article 110033. https://doi.org/10.1016/j.rser.2020.110033

  • Kleinhenz, M. D., & Bumgarner, N. R. (2012). Using Brix as an Indicator of Vegetable Quality: Fact Sheet Agriculture and Natural Resources. The Ohio State University. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://u.osu.edu/vegprolab/files/2015/10/HYG_1650_12_0-1evpdsw.pdf

  • Koga, N. (2008). An energy balance under a conventional crop rotation system in northern Japan: Perspectives on fuel ethanol production from sugar beet. Agriculture, Ecosystems & Environment, 125(1), 101–110. https://doi.org/10.1016/j.agee.2007.12.002

  • Koul, B., Yakoob, M., & Shah, M. P. (2022). Agricultural waste management strategies for environmental sustainability. Environmental Research, 206, Article 112285. https://doi.org/10.1016/j.envres.2021.112285

  • Lei, C., & Engeseth, N. J. (2021). Comparison of growth characteristics, functional qualities, and texture of hydroponically grown and soil-grown lettuce. Lwt-Food Science and Technology, 150, Article 111931. https://doi.org/10.1016/j.lwt.2021.111931

  • Monsees, H., Suhl, J., Paul, M., Kloas, W., Dannehl, D., & Würtz, S. (2019). Lettuce (Lactuca sativa, variety Salanova) production in decoupled aquaponic systems: Same yield and similar quality as in conventional hydroponic systems but drastically reduced greenhouse gas emissions by saving inorganic fertilizer. PLoS One, 14(6), Article e0218368. https://doi.org/10.1371/journal.pone.0218368

  • Morgan, J. B., & Connolly, E. L. (2013). Plant-soil interactions: Nutrient uptake. Nature Education Knowledge, 4(8), Article 2.

  • Mou, B. (2012). Nutritional quality of lettuce. Current Nutrition & Food Science, 8(3), 177–187. https://doi.org/10.2174/157340112802651121

  • Mupambwa, H. A., Namwoonde, A. S., Liswaniso, G. M., Hausiku, M. K., & Ravindran, B. (2019). Biogas digestates are not an effective nutrient solution for hydroponic tomato (Lycopersicon esculentum L.) production under a deep water culture system. Heliyon, 5(10), Article e02736. https://doi.org/10.1016/j.heliyon.2019.e02736

  • Ren, F., Sun, N., Misselbrook, T., Wu, L., Xu, M., Zhang, F., & Xu, W. (2022). Responses of crop productivity and reactive nitrogen losses to the application of animal manure to China’s main crops: A meta-analysis. Science of The Total Environment, 850, Article 158064. https://doi.org/10.1016/j.scitotenv.2022.158064

  • Sace, C. F., & Jr Natividad, E. P. (2015). Economic analysis of an urban vertical garden for hydroponic production of lettuce (Lactuca sativa). International Journal of Contemporary Applied Sciences, 2(7), 42–56.

  • Savci, S. (2012). Investigation of effect of chemical fertilizers on environment. Apcbee Procedia, 1, 287–292. https://doi.org/10.1016/j.apcbee.2012.03.047

  • Shinohara, M., Aoyama, C., Fujiwara, K., Watanabe, A., Ohmori, H., Uehara, Y., & Takano, M. (2011). Microbial mineralization of organic nitrogen into nitrate to allow the use of organic fertilizer in hydroponics. Soil Science and Plant Nutrition, 57(2), 190–203. https://doi.org/10.1080/00380768.2011.554223

  • Siddiqui, Z., Hagare, D., Chen, Z. H., Jayasena, V., Shahrivar, A. A., Panatta, O., Liang, W., & Boyle, N. (2022). Growing lettuce and cucumber in a hydroponic system using food waste derived organic liquid fertiliser. Environmental Sustainability, 5(3), 325–334. https://doi.org/10.1007/s42398-022-00234-9

  • Spiertz, J. H. J., & Ewert, F. (2009). Crop production and resource use to meet the growing demand for food, feed and fuel: Opportunities and constraints. NJAS: Wageningen Journal of Life Sciences, 56(4), 281–300. https://doi.org/10.1016/S1573-5214(09)80001-8

  • Stenstrom, M. K., & Poduska, R. A. (1980). The effect of dissolved oxygen concentration on nitrification. Water Research, 14(6), 643–649. https://doi.org/10.1016/0043-1354(80)90122-0

  • Stouvenakers, G., Dapprich, P., Massart, S., & Jijakli, M. H. (2019). Plant pathogens and control strategies in aquaponics. In S. Goddek, A. Joyce, B. Kotzen & G. M. Burnell (Eds.), Aquaponics Food Production Systems (pp. 353–378). Springer.

  • Thakulla, D., Dunn, B., Hu, B., Goad, C., & Maness, N. (2021). Nutrient solution temperature affects growth and °brix parameters of seventeen lettuce cultivars grown in an NFT hydroponic system. Horticulturae, 7(9), Article 321. https://doi.org/10.3390/horticulturae7090321

  • Tibbitts, T. W., & Bottenberg, G. (1976). Growth of lettuce under controlled humidity levels 1. Journal of the American Society for Horticultural Science, 101(1), 70–73. https://doi.org/10.21273/JASHS.101.1.70

  • Tikasz, P., MacPherson, S., Adamchuk, V., & Lefsrud, M. (2019). Aerated chicken, cow, and turkey manure extracts differentially affect lettuce and kale yield in hydroponics. International Journal of Recycling of Organic Waste in Agriculture, 8(3), 241–252. https://doi.org/10.1007/s40093-019-0261-y

  • Torres, E., Sayco, T., Cinense, M., Fabula, J., Mateo, W., & Somera, C. G. (2023). Development of an organic fertilizer bioreactor for the bioconversion of dried chicken manure into organic liquid solution. International Journal of Agricultural Technology, 19(3), 1359–1378.

  • Valin, H., Sands, R. D., van der Mensbrugghe, D., Nelson, G. C., Ahammad, H., Blanc, E., Bodirsky, B., Fujimori, S., Hasegawa, T., Havlik, P., Heyhoe, E., Kyle, P., Mason-D’Croz, D., Paltsev, S., Rolinski, S., Tabeau, A., van Meijl, H., von Lampe, M., & Willenbockel, D. (2014). The future of food demand: Understanding differences in global economic models. Agricultural Economics, 45(1), 51–67. https://doi.org/10.1111/agec.12089

  • Waldrip, H. M., Pagliari, P. H., & He, Z. (2020). Animal manure: Production, characteristics, environmental concerns, and management. John Wiley & Sons. https://doi.org/10.2134/asaspecpub67

  • Wongkiew, S., Koottatep, T., Polprasert, C., Prombutara, P., Jinsart, W., & Khanal, S. K. (2021). Bioponic system for nitrogen and phosphorus recovery from chicken manure: Evaluation of manure loading and microbial communities. Waste Management, 125, 67–76. https://doi.org/10.1016/j.wasman.2021.02.014

  • Zandvakili, O. R., Barker, A. V., Hashemi, M., & Etemadi, F. (2019). Biomass and nutrient concentration of lettuce grown with organic fertilizers. Journal of Plant Nutrition, 42(5), 444-457. https://doi.org/10.1080/01904167.2019.1567778

  • Zhang, H., Vocasek, F., Antonangelo, J., & Gillespie, C. (2020). Temporal changes of manure chemical compositions and environmental awareness in the Southern Great Plains. In H. M. Waldrip, P. H. Pagliari & Z. He (Eds.), Animal Manure: Production, Characteristics, Environmental Concerns, and Management (pp. 15-26). John Wiley & Sons.

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles