e-ISSN 2231-8542
ISSN 1511-3701
J
Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Ahmad, M. O., & Khan, R. Z. (2019). Cloud computing modeling and simulation using cloudsim environment. International Journal of Recent Technology and Engineering, 8(2), 5439-5445. https://doi.org/10.35940/ijrte.B3669.078219
Awad, A. I., El-Hefnawy, N. A., & Abdel-Kader, H. M. (2015). Enhanced particle swarm optimization for task scheduling in cloud computing environments. Procedia Computer Science, 65, 920-929. https://doi.org/10.1016/j.procs.2015.09.064
Babu, L. D. D., & Krishna, P. V. (2013). Honey bee behavior inspired load balancing of tasks in cloud computing environments. Applied Soft Computing Journal, 13(5), 2292-2303. https://doi.org/10.1016/j.asoc.2013.01.025
Caragiannis, I., Flammini, M., Kaklamanis, C., Kanellopoulos, P., & Moscardelli, L. (2011). Tight bounds for selfish and greedy load balancing. Algorithmica, 61, 606-637. https://doi.org/10.1007/s00453-010-9427-8
Coady, Y., Hohlfeld, O., Kempf, J., McGeer, R., & Schmid, S. (2015). Distributed cloud computing: Applications, status quo, and challenges. Computer Communication Review, 45(2), 38-43. https://doi.org/10.1145/2766330.2766337
Dave, S., & Maheta, P. (2014). Utilizing round robin concept for load balancing algorithm at virtual machine level in cloud environment. International Journal of Computer Applications, 94(4), 23-29. https://doi.org/10.5120/16332-5612
Devi, D. C., & Uthariaraj, V. R. (2016). Load balancing in cloud computing environment using improved weighted round robin algorithm for nonpreemptive dependent tasks. Scientific World Journal, 2016, Article 3896065. https://doi.org/10.1155/2016/3896065
Fatima, S. G., Fatima, S. K., Sattar, S. A., Khan, N. A., & Adil, S. (2019). Cloud computing and load balancing. International Journal of Advanced Research in Engineering and Technology, 10(2), 189-209. https://doi.org/10.34218/IJARET.10.2.2019.019
Goyal, T., Singh, A., & Agrawa, A. (2012). Cloudsim: Simulator for cloud computing infrastructure and modeling. Procedia Engineering, 38, 3566-3572. https://doi.org/10.1016/j.proeng.2012.06.412
Javadpour, A., Sangaiah, A. K., Pinto, P., Ja’fari, F., Zhang, W., Abadi, A. M. H., & Ahmadi, H. R. (2023). An energy-optimized embedded load balancing using DVFS computing in cloud data centers. Computer Communications, 197, 255-266. https://doi.org/10.1016/j.comcom.2022.10.019
Kapoor, S., & Dabas, C. (2015). Cluster based load balancing in cloud computing. In 2015 8th International Conference on Contemporary Computing, IC3 2015 (pp. 76-81). IEEE Publishing. https://doi.org/10.1109/IC3.2015.7346656
Kruekaew, B., & Kimpan, W. (2020). Enhancing of artificial bee colony algorithm for virtual machine scheduling and load balancing problem in cloud computing. International Journal of Computational Intelligence Systems, 13(1), 496-510. https://doi.org/10.2991/ijcis.d.200410.002
Kruekaew, B., & Kimpan, W. (2022). Multi-objective task scheduling optimization for load balancing in cloud computing environment using hybrid artificial bee colony algorithm with reinforcement learning. IEEE Access, 10, 17803-17818. https://doi.org/10.1109/ACCESS.2022.3149955
Kumar, K. P., Ragunathan, T., Vasumathi, D., & Prasad, P. K. (2020). An efficient load balancing technique based on cuckoo search and firefly algorithm in cloud. International Journal of Intelligent Engineering and Systems, 13(3), 422-432. https://doi.org/10.22266/IJIES2020.0630.38
Kumar, P., & Kumar, R. (2019). Issues and challenges of load balancing techniques in cloud computing: A survey. ACM Computing Surveys, 51(6), Article 120. https://doi.org/10.1145/3281010
Li, G., & Wu, Z. (2019). Ant colony optimization task scheduling algorithm for SWIM based on load balancing. Future Internet, 11(4), Article 90. https://doi.org/10.3390/fi11040090
Lu, Y., Zhang, J., Wu, S., Zhang, S., Zhang, Y., Li, Y., Ghosh, S., Banerjee, C., Kulkarni, A. K., Annappa, B., Domanal, S. G., Reddy, G. R. M., Komarasamy, D., & Muthuswamy, V. (2016). Load balancing in cloud environment using a novel hybrid scheduling algorithm. In 2015 IEEE International Conference on Cloud Computing in Emerging Markets, CCEM 2015 (pp. 37-42). IEEE Publishing. https://doi.org/10.1109/CCEM.2015.31
Mishra, S. K., Sahoo, B., & Parida, P. P. (2018). Load balancing in cloud computing: A big picture. Journal of King Saud University - Computer and Information Sciences, 32(2), 149-158. https://doi.org/10.1016/j.jksuci.2018.01.003
Mohanty, S., Patra, P. K., Ray, M., & Mohapatra, S. (2017). A novel meta-heuristic approach for load balancing in cloud computing. International Journal of Knowledge-Based Organizations, 8(1), 29-49. https://doi.org/10.4018/ijkbo.2018010103
Nerkar, M. H. (2012). Cloud computing in distributed system. International Journal of Computer Science and Informatics, 1(10), 97-101. https://doi.org/10.47893/ijcsi.2012.1072
Paduraru, C. I. (2014). A greedy algorithm for load balancing jobs with deadlines in a distributed network. International Journal of Advanced Computer Science and Applications, 5(2), 56-59. https://doi.org/10.14569/ijacsa.2014.050209
Ramezani, F., Lu, J., & Hussain, F. K. (2014). Task-based system load balancing in cloud computing using particle swarm optimization. International Journal of Parallel Programming, 42(5), 739-754. https://doi.org/10.1007/s10766-013-0275-4
Saura, J. R., Herraez, B. R., & Reyes-Menendez, A. (2019). Comparing a traditional approach for financial brand communication analysis with a big data analytics technique. IEEE Access, 7, 37100-37108. https://doi.org/10.1109/ACCESS.2019.2905301
Singh, H., Tyagi, S., & Kumar, P. (2021). Cloud resource mapping through crow search inspired metaheuristic load balancing technique. Computers and Electrical Engineering, 93, Article 107221. https://doi.org/10.1016/j.compeleceng.2021.107221
Sinha, G., & Sinha, D. (2020). Enhanced weighted round robin algorithm to balance the load for effective utilization of resource in cloud environment. EAI Endorsed Transactions on Cloud Systems, 6(18), Article 166284. https://doi.org/10.4108/eai.7-9-2020.166284
Sinha, U., & Shekhar, M. (2015). Comparison of various cloud simulation tools available in cloud computing. International Journal of Advanced Research in Computer and Communication Engineering, 4(3), 171-176. https://doi.org/10.17148/ijarcce.2015.4342
Tawfeek, M. A., El-Sisi, A., Keshk, A. E., & Torkey, F. A. (2013). Cloud task scheduling based on ant colony optimization. In 2013 8th International Conference on Computer Engineering & Systems (ICCES) (pp. 64-69). IEEE Publishing. https://doi.org/10.1109/ICCES.2013.6707172
Wang, Y. H., & Wu, I. C. (2009). Achieving high and consistent rendering performance of java AWT/Swing on multiple platforms. Software - Practice and Experience, 39(7), 701-736. https://doi.org/10.1002/spe
ISSN 1511-3701
e-ISSN 2231-8542