PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Alghalayini, R. (2020). Improving an internal material handling system. A case study of a Swedish company in food industry. Jönköping University, Sweden. https://www.diva-portal.org/smash/get/diva2:1458374/FULLTEXT01.pdf

  • Bako, T., & Bardey, I. A. (2020). Engineering properties of acha (digitaria exilis) grains in relation to the design of grain processing machines. Agricultural Engineering International: CIGR Journal, 22(3), 159-170.

  • BPS-Statistics Indonesia. (2021). Statistical Yearbook of Indonesia 2021. Badan Pusat Statistik. https://www.bps.go.id/publication/2021/02/26/938316574c78772f27e9b477/statistik-indonesia-2021.html

  • Brar, H. S., Sidhu, G. K., & Singh, A. (2016). Effect of moisture content on engineering properties of oats (Avena sativa L.). Agricultural Engineering International: CIGR Journal, 18(3), 186-193.

  • Bucklin, R., Thompson, S., Montross, M., & Abdel-Hadi, A. (2013). Grain storage systems design. In M. Kutz (Ed.), Handbook of Farm, Dairy and Food Machinery Engineering, (pp. 123-175). Elsevier. https://doi.org/10.1016/B978-0-12-385881-8.00007-0

  • Dauda, S. M., Ismail, F., Balami, A. A., Aliyu, M., Mohammed, I. S., & Ahmad, D. (2019). Physical and mechanical properties of raphia palm kernel at different moisture contents. Food Research, 3(4), 305-312.

  • Dawange, S. P., & Jha, S. K. (2019). Moisture dependent physical properties of quality protein maize. Journal of Agricultural Engineering, 56(3), 48-65.

  • de Oliveira, G. H. H., Corrêa, P. C., de Oliveira, A. P. L. R., Vargas-Elías, G. A., & Júnior, C. C. (2022). Arabica coffee flow properties assessed using different roasts and particle sizes during storage. Brazilian Journal of Food Technology, 25, 1-12, https://doi: 10.1590/1981-6723.02621

  • Ehiem, J. C., Ndirika, V. I. O., & Raghavan, G. S. V. (2015). Frictional properties of canarium schweifurthii engl. fruits and their interaction with moisture content and shape. International Journal of Engineering and Applied Sciences (IJEAS), 2(8), 30-34.

  • Elyashiv, H., Bookman, R., Siemann, L., Brink, U., & Huhn, K. (2020). Numerical characterization of cohesive and non-cohesive ‘sediments’ under different consolidation states using 3D DEM triaxial experiments. Processes, 8(10), Article 1252. https://doi.org/10.3390/pr8101252

  • Etim, P. J., Alonge, A. F., & Akpan, G. E. (2021). Effect of moisture content on some mechanical and frictional properties of mucuna bean (Mucuna crens) relevant to its cracking. Agricultural Engineering International: CIGR Journal, 23(4), 265-273.

  • Fadeyibi, A., Lamidi, W. A., & Ademola, S. M. (2021). Engineering and proximate properties of miracle berry fruit (Synsepalum dulcificum L.). Agricultural Engineering International: CIGR Journal, 23(4), 227-235.

  • Fayed, M. I. A., El-Shal, M. S., & Omar, O. A. (2020). Determination of some apricot seed and kernel physical and mechanical properties. Agricultural Engineering International: CIGR Journal, 22(4), 229-237.

  • FAO. (2021). Post-harvest Losses. Food and Agricultural Organization. https://www.fao.org/3/t0522e/T0522E04.htm#Post-harvest%20losses

  • Gierz, L., Kolankowska, E., Markowski, P., & Koszela, K. (2022). Measurements and analysis of the physical properties of cereal seeds depending on their moisture content to improve the accuracy of DEM simulation. Applied Science, 12(2), Article 549. https://doi: 10.3390/app12020549

  • Hasmadi, M. (2021). Effect of water on the caking properties of different types of wheat flour. Food Research, 5(1), 266-270. https://doi: 10.26656/fr.2017.5(1).412

  • Inekwe, G., Kiniyi, B. U., Umunna, M., & Udensi, N. K. (2019). Effect of moisture content on physical properties of mung bean (Vignaradiata L.). International Journal of Engineering Research, 8(07), 54-59.

  • International Coffee Organization. (2021). Coffee Year Production by Country. https://www.ico.org/prices/po-production.pdf

  • Jan, K. N., Panesar, P. S., & Singh, S. (2019). Effect of moisture content on the physical and mechanical properties of quinoa seeds. International Agrophysics, 33(1), 41-48. https://doi.org10.31545/intagr/104374

  • Kaliniewicz, Z., Jadwisieńczak, K., Żuk, Z., Konopka, S., Frączyk, A., & Krzysiak, Z. (2020). Effects of friction plate hardness and surface orientation on the frictional properties of cereal grain. International Journal of Food Science, 2020, Article 6639233. https://doi.org/10.1155/2020/6639233

  • Kopeć-Jarosz, A., & Wójcik, A. (2021). The impact of moisture and number of contact points on the process of friction in plant granular materials. Processes, 9(2), Article 215. https://doi.org/10.3390/pr9020215

  • Kruszelnicka, W. (2021). Study of selected physical-mechanical properties of corn grains important from the point of view of mechanical processing systems designing. Materials, 14(6), Article 1467. https://doi:10.3390/ma14061467

  • Larsson, S. (2019). Particle Methods for Modelling Granular Material Flow. [Doctoral dissertation]. Lulea University of Technology, Sweden. https://www.diva-portal.org/smash/get/diva2:1296317/FULLTEXT01.pdf

  • Li, X., Du, Y., Guo, J., & Mao, E. (2020). Design, simulation, and test of a new threshing cylinder for high moisture content corn. Applied Science, 10(14), Article 4925. https://doi.org/10.3390/app10144925

  • Liu, J., S. Du, S., & Fu, Z. (2021). The impact of rural population aging on farmers’ cleaner production behavior: Evidence from five provinces of the north China plain. Sustain, 13(21), Article 12199. https://doi: 10.3390/su132112199

  • McLaren, C. P., Kovar, T. M., Penn, A., Müller, C. R., & Boyce, C. M. (2019). Gravitational instabilities in binary granular materials. Proceeding of The National Academy of Science, USA, 116(19), 9263-9268. https://doi.org/10.1073/pnas.1820820116

  • Mohite, A. M., Sharma, N., & Mishra, A. (2019). Influence of different moisture content on engineering properties of tamarind seeds. International Agricultural Engineering Journal, 21(1), 220-224.

  • Nicastro, R., & Carillo, P. (2021). Food loss and waste prevention strategies from farm to fork. Sustainability, 13(10), Article 5443. https://doi.org/10.3390/su13105443

  • Okolo C. A., Haruna S. A., Chukwu O., & Madu U. O. (2020). Comparative studies of material handling time for maize (Zea mays. Linn.) and sorghum (Sorghum bicolor L. Moench) in a typical 50 metric tonnes (MT)/hr Silo. International Journal of Engineering Research and Technology, 9(1), 457-461.

  • Pawlak, K., & Kołodziejczak, M. (2020). The role of agriculture in ensuring food security in developing countries: Considerations in the context of the problem of sustainable food production. Sustainability, 12(13), Article 5488. https://doi.org/10.3390/su12135488

  • Rasti, A., Adarmanabadi, H. R., Pineda, M., & Reinikainen, J. (2021). Evaluating the effect of soil particle characterization on internal friction angle. American Journal of Engineering and Applied Sciences, 14(1), 129-138. https://doi: 10.3844/ajeassp.2021.129.138

  • Rodrigues, G. B., Resende, O., de Oliveira, D. E. C., Silva, L. C. M., & Junior, W. N. F. (2019). Mechanical properties of grains sorghum subjected to compression at different moisture contents. Journal of Agricultural Science, 11(4), Article 279. https://doi: 10.5539/jas.v11n4p279

  • Sadiku, O. A., & Omogunsoye, D. (2021). Moisture - Influenced friction properties of ackee apple (Blighia sapida) seeds. Research in Agricultural Engineering, 67(1), 26-33. https://doi: 10.17221/75/2020-RAE

  • Shi, G., Li, J., Ding, L., Zhang, Z., Ding, H., Li, N., & Kan, Z. (2022). Calibration and tests for the discrete element simulation parameters of fallen jujube fruit. Agriculture, 12(1), Article 38. https://doi.org/10.3390/agriculture12010038

  • Stephens, M. P., & Meyers, F. E. (2013). Manufacturing facilities design and material handling. Purdue University Press.

  • Sui, Z. F., Yi, W., Lu, Y. G., & Deng, L. (2021). Experimental and numerical simulation study on the shear strength characteristics of magnolia multiflora root-soil composites. Advances in Civil Engineering, 2021, Article 6642594. https://doi: 10.1155/2021/6642594

  • Tabari, S. A. M., & Shooshpasha, I. (2021). Evaluation of coarse-grained mechanical properties using small direct shear test. International Journal of Geotechnical Engineering, 15(6), 667-679. https://doi.org/10.1080/19386362.2018.1505310

  • Tang, H., Xu, C., Jiang, Y., Wang, J., Wang, Z., & Tian, L. (2021). Evaluation of physical characteristics of typical maize seeds in a cold area of north China based on principal component analysis. Processes, 9(7). Article 1167. https://doi.org/10.3390/pr9071167

  • United States Department of Agriculture. (2022). World Agricultural Production. United States Department of Agriculture, Foreign Agricultural Service. https://usdabrazil.org.br/

  • Vagová, A., Hromasová, M., Linda, M., & Vaculík, P. (2019). Determining external friction angle of barley malt and malt crush. Agronomy Research, 17(5), 2106-2114. https://doi.org/10.15159/ar.19.149

  • Vagsholm, I., Arzoomand, N. S., & Boqvist, S. (2020). Food security, safety, and sustainability-getting the trade-offs right. Frontier in Sustainable Food Systems, 4(16), 1-4. https://doi.org/10.3389/fsufs.2020.00016

  • Wang, B., & Wang, J. (2019). Mechanical properties of maize kernel horny endosperm, floury endosperm and germ. International Journal of Food Properties, 22(1), 863-877. https://doi.org/10.1080/10942912.2019.1614050

  • Wang, J., Xu, C., Qi, X., Zhou, W., & Tang, H. (2022). Discrete element simulation study of the accumulation characteristics for rice seeds with different moisture content. Foods, 11(3), Article 295. https://doi: 10.3390/foods11030295

  • Wojcik, A., Fraczek, J., & Niemczewska-Wojcik, M. (2020). The relationship between static and kinetic friction for plant granular materials. Powder Technology, 361, 739-747. https://doi.org/10.1016/j.powtec.2019.11.048

  • Xu, Q., Cheng, X., & Chen, X. (2019). Models for predicting frictional properties of rapeseed. International Agrophysics, 33(1), 61-66. https://doi.org/10.31545/intagr/104377

  • Zeng, C., & Wang, Y. (2019). The shear strength and dilatancy behavior of wheat stored in silos. Complexity, 2019, Article 1547616. https://doi.org/10.1155/2019/1547616

  • Zhang, S., Fu, J., Zhang, R., Zhang, Y., & Yuan, H. (2022). Experimental study on the mechanical properties of friction, collision and compression of tiger nut tubers. Agriculture, 12(1), Article 65. https://doi.org/10.3390/agriculture12010065

  • Zhu, Y., Miao, S., Li, H., Han, Y., & Lan, H. (2022). An empirical shear model of interface between the loess and hipparion red clay in a loess landslide. Frontiers in Earth Science, 9, 1-18. https://doi.org/10.3389/feart.2021.806832

  • Zou, Z., Zhang, Q., Xiong, C., Tang, H., Fan, L., Xie, F., Yan, J., & Luo, Y. (2020). In situ shear test for revealing the mechanical properties of the gravelly slip zone soil. Sensors, 20(22), Article 6531. https://doi.org/10.3390/s20226531

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles