e-ISSN 2231-8542
ISSN 1511-3701
J
Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Ali, J., Khan, R., Ahmad, N., & Maqsood, I. (2012). Random forests and decision trees. International Journal of Computer Science, 9(5), Article 272.
Awad, M., & Khanna, R. (2015). Support vector machines for classification. In Efficient Learning Machines (pp. 39-66). Apress Berkeley, CA. https://doi.org/10.1007/978-1-4302-5990-9_3
Behera, B., Kumaravelan, G., & Kumar, P. (2019). Performance evaluation of deep learning algorithms in biomedical document classification. In 2019 11th International Conference on Advanced Computing (ICoAC) (pp. 220-224). IEEE Publishing. https://doi.org/10.1109/ICoAC48765.2019.246843
Cerda, P., & Varoquaux, G. (2020). Encoding high-cardinality string categorical variables. IEEE Transactions on Knowledge and Data Engineering, 34(3), 1164-1176. https://doi.org/10.1109/TKDE.2020.2992529
Chen, G., & Chen, J. (2015). A novel wrapper method for feature selection and its applications. Neurocomputing, 159, 219-226. https://dl.acm.org/doi/abs/10.5555/2781902.2782171
Chuanlei, Z., Shanwen, Z., Jucheng, Y., Yancui, S., & Jia, C. (2017). Apple leaf disease identification using genetic algorithm and correlation-based feature selection method. International Journal of Agricultural and Biological Engineering, 10(2), 74-83. https://doi.org/10.3965/j.ijabe.20171002.2166
Doquire, G., & Verleysen, M. (2013). A graph Laplacian based approach to semi-supervised feature selection for regression problems. Neurocomputing, 121, 5-13. https://doi/abs/10.1016/j.neucom.2012.10.028
Dreiseitl, S., & Ohno-Machado, L. (2002). Logistic regression and artificial neural network classification models: A methodology review. Journal of Biomedical Informatics, 35(5-6), 352-359. https://doi.org/10.1016/S1532-0464(03)00034-0
Durmuş, H., Güneş, E. O., & Kırcı, M. (2017). Disease detection on the leaves of the tomato plants by using deep learning. In 2017 6th International Conference on Agro-Geoinformatics (pp. 1-5). IEEE Publishing. https://10.1109/Agro-Geoinformatics.2017.8047016
Gadekallu, T. R., Rajput, D. S., Reddy, M., Lakshmanna, K., Bhattacharya, S., Singh, S., & Alazab, M. (2021). A novel PCA-whale optimization-based deep neural network model for classification of tomato plant diseases using GPU. Journal of Real-Time Image Processing, 18(4), 1383-1396. https://doi.org/10.1007/s11554-020-00987-8
Gao, B., & Pavel, L. (2017). On the properties of the softmax function with application in game theory and reinforcement learning. arXiv Preprint. https://doi.org/10.48550/arXiv.1704.00805
Guo, G., Wang, H., Bell, D., Bi, Y., & Greer, K. (2003). KNN model-based approach in classification. In R. Meersman, Z. Tari & D. C. Schmidt (Eds.), OTM Confederated International Conferences” On the Move to Meaningful Internet Systems” (pp. 986-996). Springer. https://doi.org/10.1007/978-3-540-39964-3_62
Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., & Keutzer, K. (2016). Squeeze Net: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv Preprint. https://doi.org/10.48550/arXiv.1602.07360
Khammari, A., Nashashibi, F., Abramson, Y., & Laurgeau, C. (2005). Vehicle detection combining gradient analysis and AdaBoost classification. In Proceedings. 2005 IEEE Intelligent Transportation Systems (pp. 66-71). IEEE Publishing. https:// doi:10.1109/ITSC.2005.1520202
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 25 (p. 1). Morgan Kaufmann Publishers.
Kursa, M. B., & Rudnicki, W. R. (2010). Feature selection with the Boruta package. Journal of Statistical Software, 36, 1-13. https://doi.org/10.18637/jss.v036.i11
Li, J., Si, Y., Xu, T., & Jiang, S. (2018). Deep convolutional neural network-based ECG classification system using information fusion and one-hot encoding techniques. Mathematical Problems in Engineering, 2018, Article 7354081. https://doi.org/10.1155/2018/7354081
Ma, H., Li, Y., Chen, Q., Zhang, L., & Xu, J. (2018). A single-stage integrated boost-LLC AC–DC converter with quasi-constant bus voltage for multichannel LED street-lighting applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 6(3), 1143-1153. https://doi.org/10.1109/JESTPE.2018.2847327
Mohanty, S. P., Hughes, D. P., & Salathé, M. (2016). Using deep learning for image-based plant disease detection. Frontiers in Plant Science, 7, Article 1419. https://doi.org/10.3389/fpls.2016.01419
Mudrova, M., & Procházka, A. (2005, November 15). Principal component analysis in image processing. In Proceedings of the MATLAB Technical Computing Conference (pp. 1-4). Prague, Czech Republic.
Noriega, L. (2005). Multilayer perceptron tutorial. Staffordshire University. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4c8339b893423f1e14e34cc1543faee4e5ee4244
Ramchoun, H., Ghanou, Y., Ettaouil, M., & Idrissi, M. A. J. (2016). Multilayer perceptron: Architecture optimization and training. International Journal of Interactive Multimedia and Artificial Intelligence, 4(1), 26-30. http://doi.org/10.9781/ijimai.2016.415
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv Preprint. https://doi.org/10.48550/arXiv.1409.1556
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45(4), 427-437. https://doi.org/10.1016/j.ipm.2009.03.002
Tammina, S. (2019). Transfer learning using VGG-16 with deep convolutional neural network for classifying images. International Journal of Scientific and Research Publications, 9(10), 143-150. https://doi.org/10.29322/IJSRP.9.10.2019.p9420
Tang, Y., & Wu, X. (2016). Saliency detection via combining region-level and pixel-level predictions with CNNs. In European Conference on Computer Vision (pp. 809-825). Springer. https://doi.org/10.48550/arXiv.1608.05186
Tm, P., Pranathi, A., SaiAshritha, K., Chittaragi, N. B., & Koolagudi, S. G. (2018). Tomato leaf disease detection using convolutional neural networks. In 2018 eleventh international conference on contemporary computing (IC3) (pp. 1-5). IEEE Publishing. https://doi.org/10.1109/IC3.2018.8530532
Torlay, L., Perrone-Bertolotti, M., Thomas, E., & Baciu, M. (2017). Machine learning–XGBoost analysis of language networks to classify patients with epilepsy. Brain Informatics, 4(3), 159-169. https://doi.org/10.1007/s40708-017-0065-7
Zhang, M. L., & Zhou, Z. H. (2005). A k-nearest neighbor-based algorithm for multi-label classification. In 2005 IEEE International Conference on Granular Computing (Vol. 2, pp. 718-721). IEEE Publishing. https://doi.org/10.1109/GRC.2005.1547385
ISSN 1511-3701
e-ISSN 2231-8542