PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Adegoke, N. A., Dawod, A., Adeoti, O. A., Sanusi, R. A. & Abbasi, S. A. (2022). Monitoring the multivariate coefficient of variation for high dimensional processes. Quality and Reliability Engineering International, 38(5), 2606-2621. https://doi.org/10.1002/qre.3094

  • Alharbi, S., Raun, W. R., Arnall, D. B., & Zhang, H. (2019). Prediction of maize (Zea mays L.) population using normalized-difference vegetative index (NDVI) and coefficient of variation (CV). Journal of Plant Nutrition, 42, 673-679. https://doi.org/10.1080/01904167.2019.1568465

  • Calzada, M. E., & Scariano, S. M. (2013). A synthetic control chart for the coefficient of variation. Journal of Statistical Computation and Simulation, 83, 853-867. https://doi.org/10.1080/00949655.2011.639772

  • Castagliola, P., Achouri, A., Taleb, H., Celano, G., & Psarakis, P. (2013). Monitoring the coefficient of variation using control charts with run rules. Quality Technology & Quantitative Management, 10, 75-94. https://doi.org/10.1080/16843703.2013.11673309

  • Castagliola, P., Achouri, A., Taleb, H., Celano, G., & Psarakis, P. (2015). Monitoring the coefficient of variation using a variable sample size control chart. The International Journal of Advanced Manufacturing Technology, 80, 1561-1576. https://doi.org/10.1007/s00170-015-7084-4

  • Castagliola, P., Celano, G., & Psarakis, S. (2011). Monitoring the coefficient of variation using EWMA charts. Journal of Quality Technology, 43, 249-265. https://doi.org/10.1080/00224065.2011.11917861

  • Chakraborti, S. (2007). Run-length distribution and percentiles: The Shewhart chart with unknown parameters. Quality Engineering, 19, 119-127. https://doi.org/10.1080/08982110701276653

  • Chanda, S., Kanke, Y., Dalen, M., Hoy, J., & Tubana, B. (2018). Coefficient of variation from vegetarian index for sugarcane population and stalk evaluation. Agrosystems, Geosciences & Environment, 1, 1-9. https://doi.org/10.2134/age2018.07.0016

  • Chew, M. H., Yeong, W. C., Talib, M. A., Lim, S. L., & Khaw, K. W. (2021). Evaluating the steady-state performance of the synthetic coefficient of variation chart. Pertanika Journal of Science and Technology, 29(3), 2149-2173. https://doi.org/10.47836/pjst.29.3.20

  • Chew, X. Y., Khaw, K. W., & Yeong, W. C. (2020). The efficiency of run rules schemes for the multivariate coefficient of variation: A Markov chain approach. Journal of Applied Statistics, 47, 460-480. https://doi.org/10.1080/02664763.2019.1643296

  • Chew, X. Y., Khoo, M. B. C., Khaw, K. W., Yeong, W. C., & Chong, Z. L. (2019). A proposed variable parameter control chart for monitoring the multivariate coefficient of variation. Quality and Reliability Engineering International, 35, 2442-2461. https://doi.org/10.1002/qre.2536

  • Doughty, M. J., & Aakre, B. M. (2008). Further analysis of assessments of the coefficient of variation of corneal endothelial cell areas from specular microscopic images. Clinical and Experimental Optometry, 91, 438-446. https://doi.org/10.1111/j.1444-0938.2008.00281.x

  • Gan, F. F. (1993). An optimal design of EWMA control charts based on median run length. Journal of Statistical Computation and Simulation, 45, 169-184. https://doi.org/10.1080/00949659308811479

  • Giner-Bosch, V., Tran, K. P., Castagliola, P., & Khoo, M. B. C. (2019). An EWMA control chart for the multivariate coefficient of variation. Quality and Reliability Engineering International, 35, 1515-1541. https://doi.org/10.1002/qre.2459

  • Huang, C. C., & Tang, T. (2007). Development of a new infrared device for monitoring the coefficient of variation in yarns. Journal of Applied Polymer Science, 106, 2342-2349. https://doi.org/10.1002/app.25441

  • Kang, C. W., Lee, M. S., Seong, Y. J., & Hawkins, D. M. (2007). A control chart for the coefficient of variation. Journal of Quality Technology, 39, 151-158. https://doi.org/10.1080/00224065.2007.11917682

  • Khatun, M., Khoo, M. B. C., Lee, M. H., & Castagliola, P. (2019). One-sided control charts for monitoring the coefficient of variation in short production runs. Transactions of the Institute of Measurement and Control, 41, 1712-1728. https://doi.org/10.1177%2F0142331218789481

  • Khaw, K. W., & Chew, X. Y. (2019). A re-evaluation of the run rules control charts for monitoring the coefficient of variation. Statistics, Optimization & Information Computing, 7, 716-730. https://doi.org/10.19139/soic-2310-5070-717

  • Khaw, K. W., Chew, X. Y., Lee, M. H., & Yeong, W. C. (2021). An optimal adaptive variable sample size scheme for the multivariate coefficient of variation. Statistics, Optimization & Information Computing, 9, 681-693. https://doi.org/10.19139/soic-2310-5070-996

  • Khaw, K. W., Chew, X. Y., Yeong, W. C., & Lim, S. L. (2019). Optimal design of the synthetic control chart for monitoring the multivariate coefficient of variation. Chemometrics and Intelligent Laboratory Systems, 186, 33-40. https://doi.org/10.1016/j.chemolab.2019.02.001

  • Khaw, K. W., Khoo, M. B. C., Castagliola, P., & Rahim, M. A. (2018). New adaptive control charts for monitoring the multivariate coefficient of variation. Computers & Industrial Engineering, 126, 595-610. https://doi.org/10.1016/j.cie.2018.10.016

  • Khaw, K. W., Khoo, M. B. C., Yeong, W. C., & Wu, Z. (2017). Monitoring the coefficient of variation using a variable sample size and sampling interval control chart. Communications in Statistics - Simulation and Computation, 46, 5772-5794. https://doi.org/10.1080/03610918.2016.1177074

  • Khoo, M. B. C., Wong, V. H., Wu, Z., & Castagliola, P. (2012). Optimal design of the synthetic chart for the process mean based on median run length. IIE Transactions, 44, 765-779. https://doi.org/10.1080/0740817X.2011.609526

  • Lee, M. H., Lim, V. Y. C., Chew, X. Y., Lau, M. F., Yakub, S., & Then, P. H. H. (2020). Design of the synthetic multivariate coefficient of variation chart based on the median run length. Advances in Mathematics: Scientific Journal, 9, 7397-7406. https://doi.org/10.37418/amsj.9.9.86

  • Lim, S. L., Yeong, W. C., Khoo, M. B. C., Chong, Z. L., & Khaw, K. W. (2019). An alternative design for the variable sample size coefficient of variation chart based on the median run length and expected median run length. International Journal of Industrial Engineering: Theory, Applications, and Practice, 26, 199-220. https://doi.org/10.23055/ijietap.2019.26.2.4085

  • Mahmood, T., & Abbasi, S. A. (2021). Efficient monitoring the coefficient of variation with an application to chemical reactor process. Quality and Reliability Engineering International, 37, 1135-1149. https://doi.org/10.1002/qre.2785

  • Mim, F. N., Saha, S., Khoo, M. B. C., & Khatun, M. (2019). A side-sensitive modified group runs control chart with auxiliary information to detect process mean shifts. Pertanika Journal of Science and Technology, 27(2), 847-866.

  • Mo, Y., Ma, X., Lu, J., Shen, Y., Wang, Y., Zhang, L., Lu, W., Zhu, W., Bao, Y., & Zhou, J. (2021). Defining the target value of the coefficient of variation by continuous glucose monitoring in Chinese people with diabetes. Journal of Diabetes Investigation, 12, 1025-1034. https://dx.doi.org/10.1111%2Fjdi.13453

  • Montgomery, D. C. (2013). Statistical quality control: A modern introduction. John Wiley & Sons, Inc.

  • Ng, W. C., Khoo, M. B. C., Chong, Z. L., & Lee, M. H. (2022). Economic and economic-statistical designs of multivariate coefficient of variation chart. REVSTAT-Statistical Journal, 20, 117-134. https://doi.org/10.57805/revstat.v20i1.366

  • Nguyen, Q. T., Tran, K. P., Heuchenne, H. L., Nguyen, T. H., & Nguyen, H. D. (2019). Variable sampling Interval Shewhart control charts for monitoring the multivariate coefficient of variation. Applied Stochastics Models in Business and Industry, 35, 1253-1268. https://doi.org/10.1002/asmb.2472

  • Shriberg, L. D., Green, J. R., Campbell, T. F., Mcsweeny, J. L., & Scheer, A. R. (2003). A dianogstic marker for childhood apraxia of speech: The coefficient of variation ratio. Clinical Linguistic & Phonetics, 17, 575-595. https://doi.org/10.1080/0269920031000138141

  • Teoh, W. L., Chong, J. K., Khoo, M. B. C., Castagliola, P., & Yeong, W. C. (2017). Optimal designs of the variable sample size chart based on median run length and expected median run length. Quality and Reliability Engineering International, 33, 121-134. https://doi.org/10.1002/qre.1994

  • Tran, P. H., & Tran, K. P. (2016). The efficiency of CUSUM schemes for monitoring the coefficient of variation. Applied Stochastic Models in Business and Industry, 32, 870-881. https://doi.org/10.1002/asmb.2213

  • Voinov, V. G., & Nikulin, M. S. (1996). Unbiased estimator and their applications, multivariate case (2nd Ed.). Kluwer Publishing.

  • Wijsman, R. A. (1957). Random orthogonal transformations and their use in some classical distribution problems in multivariate analysis. The Annals of Mathematical Statistics, 28, 415-423. https://doi.org/10.1214/AOMS%2F1177706969

  • Yeong, W. C., Khoo, M. B. C., Teoh, W. L., & Castagliola, P. (2016). A control chart for the multivariate coefficient of variation. Quality and Reliability Engineering International, 32, 1213-1225. https://doi.org/10.1002/qre.1828

  • Yeong, W. C., Lee, P. Y., Lim, S. L., Ng, P. S., & Khaw, K. W. (2021). Optimal designs of the side sensitive synthetic chart for the coefficient of variation based on median run length and expected median run length. PLoS ONE, 16, Article e0255366. https://doi.org/10.1371/journal.pone.0255366

  • Yeong, W. C., Lim, S. L., Khoo, M. B. C., & Castagliola, P. (2018). Monitoring the coefficient of variation using a variable parameter chart. Quality Engineering, 30, 212-235. https://doi.org/10.1080/08982112.2017.1310230

  • Yeong, W. C., Tan, Y. Y., Lim, S. L., Khaw, K. W., & Khoo, M. B. C. (2022). A variable sample size run sum coefficient of variation chart. Quality and Reliability Engineering International, 38, 1869-1885. https://doi.org/10.1002/qre.3057

  • Zhang, J., Li, Z., Chen, B., & Wang, Z. (2014). A new exponentially weighted moving average control chart for monitoring the coefficient of variation. Computers & Industrial Engineering, 78, 205-212. https://doi.org/10.1016/j.cie.2014.09.027

  • Zhou, Q., Zou, C., Wang, Z., & Jiang, W. (2012). Likelihood-based EWMA charts for monitoring Poisson count data with time-varying sample sizes. Journal of the American Statistical Association, 107, 1049-1062. https://doi.org/10.1080/01621459.2012.682811

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles