PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Abdulla, N. N., & Hasan, M. F. (2018). Effect of gap between airfoil and embedded rotating cylinder on the airfoil aerodynamic performance. Research & Development in Material Science, 3(4), 1-10. https://doi.org/10.31031/rdms.2018.03.000567

  • Ahmed, S., Nazari, A., & Wahba, E. (2014). Numerical analysis of separation control over an airfoil section. International Review of Aerospace Engineering, 7(2), 61-68. https://doi.org/10.15866/irease.v7i2.2057

  • Ali, H. M., Rafie, A. S. M., Ali, S. A. M., & Gires, E. (2021a). Computational analysis of the rotating cylinder embedment onto flat plate. CFD Letters, 13(12), 133-149. https://doi.org/10.37934/cfdl.13.12.133149

  • Ali, H. M., Rafie, A. S. M., & Ali, S. A. M. (2021b). Numerical analysis of leading-edge cylinder aerofoil on Selig S1223 for moving surface boundary control. Journal of Aeronautics, Astronautics and Aviation, 53(2), 143-153. https://doi.org/10.6125/JoAAA.202106_53(2).06

  • ANSYS. (2013) ANSYS fluent theory guide. ANSYS, Inc. https://www.academia.edu/38091499/ANSYS_Fluent_Theory_Guide

  • Badalamenti, C., & Prince, S. (2008). Effects of endplates on a rotating cylinder in crossflow. In AIAA Applied Aerodynamics Conference. American Institute of Aeronautics Ins. https://doi.org/10.2514/6.2008-7063

  • Barati, E., Zarkak, M. R., & Esfahani, J. A. (2019, April 30 - May 2). Effect of rotational direction of circular cylinder for mixed convection at subcritical Reynolds Number. In 27th Annual International Conference of Iranian Society of Mechanical Engineers (ISME 2019) (pp. 1-6). Tehran, Iran.

  • Boye, T. E., Nwaoha, T. C., Olusegun, S. D., & Ashiedu, F. I. (2017). A validation method of computational fluid dynamics (CFD) simulation against experimental data of transient flow in pipes system. American Journal of Engineering Research, 6(6), 67-79.

  • Chunchuzov, I., Kulichkov, S., Perepelkin, V., Popov, O., Firstov, P., Assink, J. D., & Marchetti, E. (2015). Study of the wind velocity-layered structure in the stratosphere, mesosphere, and lower thermosphere by using infrasound probing of the atmosphere. Journal of Geophysical Research: Atmosphere, 120(17), 8828-8840. https://doi.org/10.1002/2015JD023276

  • D’Oliveira, F. A., Melo, F. C. L. D., & Devezas, T. C. (2016). High-altitude platforms - Present situation and technology trends. Journal of Aerospace Technology and Management, 8(3), 249-262. https://doi.org/10.5028/jatm.v8i3.699

  • Faisal, K. M., Salam, M. A., Ali, M. T., Sarkar, M. S., Safa, W., & Sharah, N. (2017). Flow control using moving surface at the leading edge of aerofoil. Journal of Mechanical Engineering, 47(1), 45-50. https://doi.org/10.3329/jme.v47i1.35420

  • Fidler, F., Knapek, M., Horwath, J., & Leeb, WR. (2010). Optical communications for high-altitude platforms. Journal of Selected Topics in Quantum Electronics, 16(5), (1058-1070). https://doi.org/10.1109/JSTQE.2010.2047382

  • Gowree, E. R., & Prince, S. A. (2012). A computational study of the aerodynamics of a spinning cylinder in a crossflow of high Reynolds number. In Proceedings of the 28th Congress of the International Council of the Aeronautical Sciences (ICAS’12) (pp. 1138-1147). Academia.

  • Gultom, A., & Yuniarti, D. (2016). Kajian teknologi high altitude platform (HAP)[Study of high altitude platform (HAP) technology]. Buletin Pos Dan Telekomunikasi, 14(1), 1-11. https://doi.org/10.17933/bpostel.2016.140102

  • Hamisu, M. T., Jamil, M. M., Umar, U. S., & Sa’ad, A. (2019). Numerical study of flow in asymmetric 2D plane diffusers with different inlet channel lengths. CFD Letters, 11(5), 1-21.

  • Huda, M. N., Ahmed, T., Ahmed, T. S. M., Salam, M. A., Afsar, M. R., Faisal, K. M., & Ali, M. T. (2015). Study of NACA 0010 symmetric airfoil with leading edge rotating cylinder in a subsonic wind tunnel. ResearchGate.

  • Khalil, H., Saqr, K., Eldrainy, Y., & Abdelghaffar, W. (2018). Aerodynamics of a trapped vortex combustor: A comparative assessment of RANS based CFD models. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 43(1), 1-19.

  • Khan, S. A., Bashir, M., Baig, M. A. A., & Ali, F. A. G. M. (2020). Comparing the effect of different turbulence models on the CFD predictions of NACA0018 airfoil aerodynamics. CFD Letters, 12(3), 1-10. https://doi.org/10.37934/cfdl.12.3.110

  • Kim, S. E., Choudhury, D., & Patel, B. (1999). Computations of complex turbulent flows using the commercial code FLUENT. In M. D. Salas, J. N. Hefner & L. Sakell (Eds.), Modeling complex turbulent flows (pp. 259-276). Springer. https://doi.org/10.1007/978-94-011-4724-8_15

  • Kölzsch, A., & Breitsamter, C. (2014). Vortex-flow manipulation on a generic delta-wing configuration. Journal of Aircraft, 51(5), 1380-1390. https://doi.org/10.2514/1.C032231

  • Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598-1605. https://doi.org/10.2514/3.12149

  • Merryisha, S., & Rajendran, P. (2019). CFD validation of NACA 2412 airfoil. ResearchGate. https://doi.org/10.13140/RG.2.2.16245.42723

  • Mgaidi, A. M., Rafie, A. S., Ahmad, K. A., Zahari, R., Hamid, M. F. A., & Marzuki, O. F. (2018). Numerical and experimental analyses of the flow around a rotating circular cylinder at subcritical regime of Reynolds number using K-E and K-Ω-SST turbulent models. ARPN Journal of Engineering and Applied Sciences, 13(3), 954-960.

  • Modi, V. J. (1997). Moving surface boundary-layer control: A review. Journal of Fluids Structures, 11(6), 627-663. https://doi.org/10.1006/jfls.1997.0098

  • Modi, V. J., Fernando, M. S. U. K., & Yokomizo, T. (1991). Moving surface boundary-layer control-Studies with bluff bodies and application. AIAA journal, 29(9), 1400-1406. https://doi.org/10.2514/3.10753

  • Monk, D., & Chadwick, E. A. (2017, July 3-6). Comparison of turbulence models effectiveness for a delta wing at low Reynolds numbers. In 7th European Conference for Aeronautics and Space Sciences (EUCASS) (pp. 1-12). Milan, Italy. https://doi.org/10.13009/EUCASS2017-653

  • Oller, S. A., Nallim, L., & Oller, S. (2016). Usability of the Selig S1223 profile airfoil as a high lift hydrofoil for hydrokinetic application. Journal of Applied Fluid Mechanics (JAFM), 9(2), 537-542. https://doi.org/10.18869/acadpub.jafm.68.225.24302

  • Russo, F., & Basse, N. T. (2016). Scaling of turbulence intensity for low-speed flow in smooth pipes. Flow Measurement and Instrumentation, 52, 101-114. https://doi.org/10.1016/j.flowmeasinst.2016.09.012

  • Salam, M. A., Deshpande, V., Khan, N. A., & Ali, M. T. (2019). Numerical analysis of effect of leading-edge rotating cylinder on NACA0021 symmetric airfoil. European Journal of Engineering and Technology Research, 4(7), 11-17. https://doi.org/10.24018/ejeng.2019.4.7.1385

  • Selig, M. S., & Guglielmo, J. J. (1997). High-lift low Reynolds number aerofoil design. Journal of Aircraft, 34(1), 72-79. https://doi.org/10.2514/2.2137

  • Selig, M. S., Guglielmo, J. J., Broeren, A. P., & Gigue ́re, P. (1995). Summary of low-speed airfoil data, Volume 1. SoarTech Publications.

  • Selig, M. S., Lyon, C. A., Gigue ́re, P., Ninham, C. P., & Guglielmo, J. J. (1996). Summary of low-speed airfoil data, Volume 2. SoarTech Publications.

  • Šidlof, P., Antoš, P., Šimurda, D., & Štěpán, M. (2017). Turbulence intensity measurement in the wind tunnel used for airfoil flutter investigation. EPJ Web of Conferences, 143, Article 02107.https://doi.org/10.1051/epjconf/201714302107

  • Torres, G. E. (2002). Aerodynamics of low aspect ratio wings at low Reynolds numbers with applications to micro air vehicle design and optimization (Publication No. 3040583). (Doctoral dissertation). University of Notre Dame, USA. https://www.proquest.com/docview/305522704?pq-origsite=gscholar&fromopenview=true

  • Tozer, T., & Grace, D. (2001). High-altitude platforms for wireless communications. IEE Electronics & Communication Engineering Journal, 13(3), 127-137. https://doi.org/10.1049/ecej:20010303

  • Wang, S., Zhang, X., He, G., & Liu, T. (2013). A lift formula applied to low-Reynold-number unsteady flows. Physics of Fluid, 25, Article 093605. https://doi.org/10.1063/1.4821520

  • Wilcox, D. C. (1988). Reassessment of the scale-determining equation for advanced turbulence models. American Institute of Aeronautics and Astronautics Journal, 26(11), 1299-1310. https://doi.org/10.2514/3.10041

  • Wolff, E. B. (1925). Preliminary investigation of the effect of a rotating cylinder in a wing (No. NACA-TM-307). National Advisory Committee for Aeronautics. https://ntrs.nasa.gov/api/citations/19930086915/downloads/19930086915.pdf

  • Yao, Q., Zhou, C. Y., & Wang, C. (2016). Numerical study of the flow past a rotating cylinder at supercritical Reynolds number. In Proceedings of the 2016 4th International Conference on Mechanical Materials and Manufacturing Engineering (p. 813-816). Atlantis Press. https://doi.org/10.2991/mmme-16.2016.159

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles