e-ISSN 2231-8542
ISSN 1511-3701
J
Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Abdel-Galil, A., Hussien, M. S., & Yahia, I. S. (2021). Synthesis & optical analysis of nanostructures F-doped ZnO thin films by spray pyrolysis: Transport electrode for photocatalytic applications. Optical Materials, 114, Article 110894. https://doi.org/10.1016/j.optmat.2021.110894
Abdulrahman, A. F., Ahmed, S. M., Ahmed, N. M., & Almessiere, M. A. (2020). Enhancement of ZnO nanorods properties using modified chemical bath deposition method: Effect of precursor concentration. Crystal, 10(5), Article 386. https://doi.org/10.3390/cryst10050386
Addamo, M., Augigliaro, V., Di Paola, A., Garcia-Lopez, E., Loddo, V., Marci, G., & Palmisano, L. (2008). Photocatalytic thin films of TiO2 formed by sol-gel process using titanium tetraisopropoxide as the precursor. Thin Solid Films, 516(12), 3802-3807. https://doi.org/10.1016/j.tsf.2007.06.139
Al Farsi, B., Souier, T. M., Al Marzouqi, F., Al Maashani, M., Bououdina, M., Widatallah, H. M., & Al Abri, M. (2021). Structural and optical properties of visible active photocatalytic Al doped ZnO nanostructured thin films prepared by dip coating. Optical Materials, 113, Article 110868. https://doi.org/10.1016/j.optmat.2021.110868
Alenezi, M. R. (2018). Hierarchical zinc oxide nanorings with superior sensing properties. Materials Science and Engineering: B, 236(237), 132-138. https://doi.org/10.1016/j.mseb.2018.11.011
Banari, M., Memarian, N., & Vomiero, A. (2021). Effect of the seed layer on the photodetection properties of ZnO nanorods. Materials Science and Engineering: B, 272, Article 115332. https://doi.org/10.1016/j.mseb.2021.115332
Bindu, P., & Thomas, S. (2014). Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. Journal of Theory Applied Physics, 8, 123-134. https://doi.org/10.1007/s40094-014-0141-9
Chason, E., Keckes, J., Sebastian, M., Thompson, G. B., Barthel, E., Doll, G. L., Murray, C. E., Stoessel, C. H., & Martinu, L. (2018). Review articles: Stress in thin films and coatings: Current status, challenges, and prospects. Journal of Vacuum Science and Technology A, 36(2), 1-49. https://doi.org/10.1116/1.5011790
Chen, X. X., Chen, L., Li, G., Cai, L. X., Miao, G., Guo, Z., & Meng, F. L. (2021). Selectively enhanced gas-sensing performance to n-butanol based on uniform CdO-decorated porous ZnO nanobelts. Sensors and Actuators B: Chemical, 334, Article 129667. https://doi.org/10.1016/j.snb.2021.129667
Daniel, L., Falko, S., & Dietrich, R. Z. (2014). Thin films woth high surface roughness: Thickness and dielectric function analysis using spectroscopic ellipsometry. Methodology, 3(82), 1-8. https://doi.org/10.1186/2193-1801-3-82
Djurisic, A. B., Ng, A. M. C., & Chen, X. Y. (2010). ZnO nanostructures for optoelectronics: Material properties and device applications. Progress in Quantum Electronics, 34(4), 191-259. https://doi.org/10.1016/j.pquantelec.2010.04.001
El Zawawi, I. K., Mahdv, M. A., & El-Sayad, E. A. (2017). Influence of film thickness and heat treatment on the physical properties of Mn doped Sb2Se3 nanocrystalline thin films. Journal of Nanomaterials, 2017, Article 7509098. https://doi.org/10.1155/2017/7509098
Gonçalves, R. S., Barrozo, P., Brito, G. L., Viana, B. C., & Cunha, F. (2017). The effect thickness on optical, structural, and growth mechanism of ZnO thin film prepared by magnetron sputtering. Thin Solid Films, 661, 40-45. https://doi.org/10.1016/j.tsf.2018.07.008
Gunes, S., Neugebauer, H., & Sariciftci, N. S. (2007). Conjugated polymer-based organic solar cells. Chemical Reviews, 107(4), 1324-1338. https://doi.org/10.1021/cr050149z
Hajezi, S. R., Hosseini, H. M., & Ghamsari, M. S. (2008). The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor-liquid-solid (VLS) mechanism. Journal of Alloys and Compounds, 455(1-2), 353-357. https://doi.org/10.1016/j.jallcom.2007.01.100
Hasabeldaim, E. H. H., Ntwaeborwa, O. M., Kroon, R. E., Coetsee, E., & Swart, H. C. (2020). Luminescence properties of Eu doped ZnO PLD thin films: The effect of oxygen partial pressure. Superlattices and Microstructures, 139, Article 106432. https://doi.org/10.1016/j.spmi.2020.106432
Hock, B. L., Riski, T. G., Sin, T. T., Chun, H. T., Alshanableh, A., Oleiwi, H. F., Chi, C. Y., Hj Jumali, M. H., & Muhammad Yahaya. (2016). Controlled defect fluorine-incorporated ZnO nanorods for photovoltaic enhancement. Scientific Reports, 6, Article 32645. https://doi.org/1-11.10.1038/srep32645
Huey, J. T., Zainal, Z., Talib, Z. A., Hong, N. L., Shafie, S., Sin, T. T., Kar, B. T., & Bahrudin, N. N. (2021). Synthesis of high quality hydrothermally grown ZnO nanorods for photoelectrochemical cell electrode. Ceramics International, 47(10, Part A), 14194-14207. https://doi.org/10.1016/j.ceramint.2021.02.005
Ikizler, B., & Peker, S. M. (2014). Effect of the seed layer thickness on the stability of ZnO nanorod arrays. Thin Solid Film, 558, 149-159. https://doi.org/10.1016/j.tsf.2014.03.019
Irvine, W. T. M., Hollingsworth, A. D., Grier, D. G., & Chaikin, P. M. (2013). Dislocation reactions, grain boundaries, and irreversibility in two-dimensional lattices using topological tweezers. Applied Physical Sciences, 110(39), 15544-15548. https://doi.org/10.1073/pnas.1300787110
Jimenez-Cadena, G., Comini, E., Ferroni, M., Vomiero, A., & Sberveglieri, G. (2010). Synthesis of different ZnO nanostructures by modified PVD process and potential use for dye-sensitized solar cells. Materials Chemistry and Physics, 124(1), 694-698. https://doi.org/10.1016/j.matchemphys.2010.07.035
Kaiyong, C., Michael, M., Korg, B., Annett, R., & Klaus, D. J. (2005) Surface structure and composition of flat titanium thin films as a function of film thickness and evaporation rate. Applied Surface Science, 250(2005), 252-267. https://doi.org/10.1016/j.apsusc.2005.01.013.
Kamalianfar, A., Halim, S. A., Behzad, K., Naseri, M. G., Navasery, M., Din, F. U., Zahedi, J. A. M., Lim, K. P., Chen, S. K., & Sidek, H. A. A. (2013) Effect of thickness on structural, optical, and magnetic properties of Co doped ZnO thin film by pulsed laser deposition. Journal of Optoelectronics and Advanced Materials, 15(3), 239- 243.
Kannan, S., Subiramaniyam, N. P., & Lavanisadevi, S. U. Controllable synthesis of ZnO nanorods at different temperatures for enhancement of dye-sensitized solar cell performance. Material Letters, 274, Article 127994. https://doi.org/10.1016/j.matlet.2020.127994
Khan, M. I., Bhatti, K. A., Alonizan, N., & Althobaiti, H. S. (2017). Characterization of multilayer ZnO thin films deposited by sol-gel spin coating technique. Results in Physics, 7, 651-655. https://doi.org/10.1016/j.rinp.2016.12.029
Khan, Z. R., Abdullah S. Alshammari., Bouzidi, M., Shkir, M., & Shukla, D. K. (2021). Improved optoelectronic performance of sol-gel derived ZnO nanostructured thin films. Inorganic Chemistry Communications, 132, Article 108812. https://doi.org/10.1016/j.inoche.2021.108812
Khranovskyy, V., Yakimova, R., Karlsson, F., Abdul, S. S., Holtz, P., Urgessa, Z. N., Oluwafemi, O. S., & Botha, J. R. (2012). Comparative PL study of individual ZnO nanorods, grown by APMOCVD and CBD technique. Physica B: Condensed Matter, 407(10), 1538-1442. https://doi.org/10.1016/j.physb.2011.09.080
Kumar, S., Share, P. D., & Kumar, S. (2018). Optimization of CVD parameters for ZnO nanorods growth: Its photoluminescence and field emission properties. Materials Research Bulletin, 105, 237-245. https://doi.org/10.1016/j.materresbull.2018.05.002
Kumar, V., Singh, N., Mehra, R. M., Kapoor, A., Purohit, L. P., & Swart, H. C. (2013). Role of film thickness on the properties of ZnO thin films grown by sol-gel method. Thin Solid Films, 539. https://doi.org/10.1016/j.tsf.2013.05.088
Lokesh, K. S., Kumar, J. R. N., Kannantha, V., Pinto, T., & Sampreeth, U. (2020). Experimental evaluation of substrate and annealing conditions on ZnO thin films prepared by sol-gel method. Materialstoday: Proceedings, 24(2), 201-208. https://doi.org/10.1016/j.matpr.2020.04.268
Lubomir, S., Libor, L., & Jarmila, M. (2014). Influence of surface roughness on optical characteristics of multilayer solar cells. Applied Physics, 12(6), 631-64. 10.15598/aeee.v12i6.1078
Madhavi, J. (2019). Comparison of average crystallite size by X-ray peak broadening and Williamson-Hall and size-strain plots for VO2+ doped ZnS/CdS composite nanopowder. SN Applied. Science, 1, Article 1509. https://doi.org/10.1007/s42452-019-1291-9
Magnfalt, D., Fillon, A., Boyd, R. D., Helmersson, U., Sarakinos, K., & Abadias, G. (2015). Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films. Journal of Applied Physics, 119(5), Article 055305. https://doi.org/10.1063/1.4941271
Mahato, S., & Kar, A. K. (2017). The effect of annealing on structural, optical, and photosensitive properties of electrodeposited cadmium selenide thin films. Journal of Science: Advanced Materials and Devices, 2(2), 165-171. https://doi.org/10.1016/j.jsamd.2017.04.001
McGinty, J., Yazdanpanah, N., Price, C., Joop, H. T., & Sefcik, J. (2020). Nucleation and crystal growth in continuous crystallization. In N. Yazdanpanah & Z. K. Nagy (Eds.), The Handbook of Continuous Crystallization (pp. 1-50). Royal Society of Chemistry. https://doi.org/10.1039/9781788013581-00001
Mohammadzadeh, A., Azadbeh, M., Shokriyan, B., & Abad, S. N. K. (2020). Synthesis of ZnO nanocombs and tetrapods by catalyst-free oxidation of alpha brass powders in air atmosphere. Ceramics International, 46(2), 2552-2557. https://doi.org/10.1016/j.ceramint.2019.09.112
Mosalagae, K., Murape, D. M., & Lepodise, L. M. (2020). Effects of growth conditions on properties of CBD synthesized ZnO nanorods grown on ultrasonic spray pyrolysis deposited ZnO seed layers. Heliyon, 6(7), 1-10. https://doi.org/10.1016/j.heliyon.2020.e04458
Padmanabhan, S. C., Collins, T. W., Pillai, S. C., McCormack, D. E., Kelly, J. M., Holmes, J. D., & Morris, M. A. (2020). A conceptual change in crystallisation mechanisms of oxide materials from solutions in closed systems. Scientific Reports, 10, Article 18414. https://doi.org/10.1038/s41598-020-75241-z
Pokai, S., Lomnonthakul, P., Horprathum, M., Kalasung, S., Eiamchai, P., Limwichean, S., Nuntawong, N., Pattantsetakul, V., Tuscharoen, S., & Kaewkhao, J. (2016). Influence of growth conditions on morphology of ZnO nanorods by low-temperature hydrothermal method. Key Engineering Materials, 675-676, 53-56. https://doi.org/10.4028/www.scientific.net/kem.675-676.53
Regmi, G., & Velumani, S. (2021). Impact of target power on the properties of sputtered intrinsic zinc oxide (i-ZnO) thin films and its thickness dependence performance on CISE solar cells. Optical Materials, 119, Article 111350. https://doi.org/10.1016/j.optmat.2021.111350
Rezaie, M. N., Manavizadeh, N., Nayeri, F. D., Bidgoli, M. M., Nadimi, E., & Boroumand, F. A. (2018). Effect of seed layers on low-temperature, chemical bath deposited ZnO nanorods-based near UV-OLED performance. Ceramics International, 44(5), 4937-4945. https://doi.org/10.1016/j.ceramint.2017.12.086
Rodriguez-Martinez, Y., Alba-Cabarnas, J., Cruzata, O., Bianco, S., Tresso, E., Rossi, F., & Vaillant-Roca, L. (2020). In-situ pulsed laser induced growth pf CdS nanoparticles on ZnO nanorods surfaces. Material Research Bulletin, 125, Article 110790. https://doi.org/10.1016/j.materresbull.2020.110790
Roy, S., Banerjee, N., Sarkar, C. K., & Bhattacharyya, P. (2013). Development of an ethanol sensor based grown ZnO nanorods. Solid-State Electronics, 87, 43-50. https://doi.org/10.1016/j.sse.2013.05.003
Rwenyagila, E. R., Ayei-Tuffour, B., Kana, M. G. Z., Akin-Ojo, O. & Soboyejo, W. O. (2014). Optical properties of ZnO/Al/ZnO multilayer films for large area transparent electrodes. Journal of Material Research, 29, 2912-2920. https://doi.org/10.1557/jmr.2014.298
Saravanan, K., Krishnan, R., Hsieh, S. H., Wang, H. T., Wang, Y. F., Pong, W. F., Asokan, K., Avasthi, D. K., & Kanjilal, D. (2015). Effect of defects and film thickness on the optical properties of ZnO-Au hybrid films. Royal Society of Chemistry Advances, 51(5), 40813-40820. https://doi.org/10.1039/c5ra02144h
Scholtz, L., Ladanyi, L., & Mullerova, J. (2014). Influence of surface roughness on optical characteristics of multilayers solar cells. Applied Physics, 12(6), 631-640. https://doi.org/10.15598/aeee.v12i6.1078
Shalu, G., Shukla, M., Tiwari, A., Agrawal, J., Bilgaiyan, A., & Singh, V. (2020). Role of solvent used to cast P3HT thin films on the performance of ZnO/P3HT hybrid photo detector. Physica E: Low-dimensional Systems and Nanostructures, 115, Article 113694. https://doi.org/10.1016/j.physe.2019.113694
Shariffudin, S. S., Salina, M., Herman, S. H., & Rusop, M. (2012). Effect of film thickness on structural, electrical, and optical properties of sol-gel deposited layer-by-layer ZnO nanoparticles. Transaction on Electrical and Electronic Materials, 13(2), 102-105. https://doi.org/10.4313/TEEM.2012.13.2.102
Sharma, S., Vyas, S., Periasamy, C., & Chakrabarti, P. (2014). Structural and optical characterization of ZnO thin films for optoelectronic device applications by RF sputtering technique. Superlattices and Microstructures, 75, 378-389. https://doi.org/10.1016/j.spmi.2014.07.032
Suzuki, K., & Kijima, K. (2005). Optical band gap of barium titanate nanoparticles prepared by RF-plasma chemical vapor deposition. Japanese Journal of Applied Physics, 44(4R), 2081-2082. https://doi.org/10.1143/JJAP.44.2081
Taha, K. K., M’hamed, M. O., & Idris, H. (2015). Mechanical fabrication and characterization of zinc oxide (ZnO) nanoparticles. Journal of Ovonic Research, 11(6), 271-276.
Teh, Y. C., Ala’eddin, A. S., Jamal, Z. A. Z., & Poopalan, P. (2017). Correlation of film thickness to optical band gap of sol-gel derived Ba0.9Gd0.1 TiO3 thin films for optoelectronic applications. EPJ Web of Conferences, 162, Article 01042. https://doi.org/10.1051/epjconf/201716201042
Yang, G., & Park, S. J. (2019). Deformation of single crystal, polycrystalline materials, and thin films: A review. Materials, 12(12), 1-18. https://doi.org/10.3390/ma12122003
Zhang, Y., Ram, M. K., Stefanakos, E. K., & Goswami, D. Y. (2012). Synthesis Characterization, and application of ZnO nanowires. Nanofiber Manufacture, Properties and Application, 2012, Article 624520. https://doi.org/10.1155/2012/624520
Zhou, L., Zeng, W., & Li, Y. (2019). A facile one-step hydrothermal synthesis of a novel NiO/ZnO nanorod composite and its enhanced ethanol sensing property. Material Letters, 254, 92-95. https://doi.org/10.1016/j.matlet.2019.07.042
ISSN 1511-3701
e-ISSN 2231-8542