PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Abbott, K. C. (2011). A dispersal‐induced paradox: Synchrony and stability in stochastic metapopulations. Ecology Letters, 14(11), 1158-1169. https://doi.org/10.1111/j.1461-0248.2011.01670.x

  • Aliyu, M. B., & Mohd, M. H. (2021). Combined impacts of predation, mutualism and dispersal on the dynamics of a four-species ecological system. Pertanika Journal of Science & Technology, 29(1), 239-244. https://doi.org/10.47836/pjst.29.1.13

  • Allesina, S., & Tang, S. (2012). Stability criteria for complex ecosystems. Nature, 483(7388), 205-208. https://doi.org/10.1038/nature10832

  • Amarasekare, P. (2016). Evolution of dispersal in a multi‐trophic community context. Oikos, 125(4), 514-525. https://doi.org/10.1111/oik.02258

  • Anderson, K. E., & Hayes, S. M. (2018). The effects of dispersal and river spatial structure on asynchrony in consumer–resource metacommunities. Freshwater biology, 63(1), 100-113. https://doi.org/10.1111/fwb.12998

  • Bach, L. A., Thomsen, R., Pertoldi, C., & Loeschcke, V. (2006). Kin competition and the evolution of dispersal in an individual-based model. Ecological Modelling, 192(3-4), 658-666. https://doi.org/10.1016/j.ecolmodel.2005.07.026

  • Baek, H. (2018). Complex dynamics of a discrete-time predator-prey system with ivlev functional response. Mathematical Problems in Engineering, 2018, Article 8635937. https://doi.org/10.1155/2018/8635937

  • Barabás, G., D’Andrea, R., & Stump, S. M. (2018). Chesson’s coexistence theory. Ecological Monographs, 88(3), 277-303. https://doi.org/10.1002/ecm.1302

  • Barabás, G., J. Michalska-Smith, M., & Allesina, S. (2016). The effect of intra-and interspecific competition on coexistence in multispecies communities. The American Naturalist, 188(1), E1-E12. https://doi.org/10.1086/686901

  • Barraquand, F., Louca, S., Abbott, K. C., Cobbold, C. A., Cordoleani, F., DeAngelis, D. L., & Murray, D. L. (2017). Moving forward in circles: Challenges and opportunities in modelling population cycles. Ecology Letters, 20(8), 1074-1092. https://doi.org/10.1111/ele.12789

  • Bashkirtseva, I., Ryashko, L., & Ryazanova, T. (2019). Stochastic variability and transitions to chaos in a hierarchical three-species population model. Chaos, Solitons & Fractals, 119, 276-283. https://doi.org/10.1016/j.chaos.2018.12.035

  • Bassett, A., Krause, A. L., & Van Gorder, R. A. (2017). Continuous dispersal in a model of predator–prey-subsidy population dynamics. Ecological Modelling, 354, 115-122. https://doi.org/10.1016/j.ecolmodel.2017.02.017

  • Becks, L., Ellner, S. P., Jones, L. E., & Hairston Jr, N. G. (2012). The functional genomics of an eco‐evolutionary feedback loop: Linking gene expression, trait evolution, and community dynamics. Ecology Letters, 15(5), 492-501. https://doi.org/10.1111/j.1461- 0248.2012.01763.x

  • Bjørnstad, O. N. (2000). Cycles and synchrony: two historical ‘experiments’ and one experience. Journal of Animal Ecology, 69(5), 869-873. https://doi.org/10.1046/j.1365-2656.2000.00444.x

  • Briggs, C. J., & Hoopes, M. F. (2004). Stabilizing effects in spatial parasitoid–host and predator–prey models: A review. Theoretical Population Biology, 65(3), 299-315. https://doi.org/10.1016/j.tpb.2003.11.001

  • Bullock, J. M., Kenward, R. E., & Hails, R. S. (Eds.). (2002). Dispersal ecology: 42nd symposium of the British ecological society (Vol. 42). Cambridge University Press.

  • Carrara, F., Giometto, A., Seymour, M., Rinaldo, A., & Altermatt, F. (2015). Inferring species interactions in ecological communities: A comparison of methods at different levels of complexity. Methods in Ecology and Evolution, 6(8), 895-906. https://doi.org/10.1111/2041-210X.12363

  • Chaianunporn, T., & Hovestadt, T. (2012). Evolution of dispersal in metacommunities of interacting species. Journal of Evolutionary Biology, 25(12), 2511-2525. https://doi.org/10.1111/j.1420-9101.2012.02620.x

  • Chaianunporn, T., & Hovestadt, T. (2015). Evolutionary responses to climate change in parasitic systems. Global Change Biology, 21(8), 2905-2916. https://doi.org/10.1111/gcb.12944

  • Chesson, P. (2018). Updates on mechanisms of maintenance of species diversity. Journal of Ecology, 106(5), 1773-1794. https://doi.org/10.1111/1365-2745.13035

  • Chow, Y., Jang, S. R. J., & Yeh, N. S. (2018). Dynamics of a population in two patches with dispersal. Journal of Difference Equations and Applications, 24(4), 543-563. https://doi.org/10.1080/10236198.2018.1428962

  • Crooks, K. R., & Sanjayan, M. (Eds.). (2006). Connectivity conservation (Vol. 14). Cambridge University Press.

  • Crowley, P. H. (1981). Dispersal and the stability of predator-prey interactions. The American Naturalist, 118(5), 673-701. https://doi.org/10.1086/283861

  • Dey, S., & Joshi, A. (2006). Stability via asynchrony in Drosophila metapopulations with low migration rates. Science, 312(5772), 434-436. https://doi.org/10.1126/science.1125317

  • Feyrer, F., Hobbs, J., Acuna, S., Mahardja, B., Grimaldo, L., Baerwald, M., Johnson, R. C., & Teh, S. (2015). Metapopulation structure of a semi-anadromous fish in a dynamic environment. Canadian Journal of Fisheries and Aquatic Sciences, 72(5), 709-721. https://doi.org/10.1139/cjfas-2014-0433

  • Fussell, E. F., Krause, A. L., & Van Gorder, R. A. (2019). Hybrid approach to modeling spatial dynamics of systems with generalist predators. Journal of Theoretical Biology, 462, 26-47. https://doi.org/10.1016/j.jtbi.2018.10.054

  • Fussmann, G. F., & Gonzalez, A. (2013). Evolutionary rescue can maintain an oscillating community undergoing environmental change. Interface Focus, 3(6), Article 20130036. https://doi.org/10.1098/rsfs.2013.0036

  • Gandon, S. (1999). Kin competition, the cost of inbreeding and the evolution of dispersal. Journal of Theoretical Biology, 200(4), 345-364. https://doi.org/10.1006/jtbi.1999.0994

  • Gandon, S., & Rousset, F. (1999). Evolution of stepping-stone dispersal rates. Proceedings of the Royal Society of London. Series B: Biological Sciences, 266(1437), 2507-2513. https://doi.org/10.1098/rspb.1999.0953

  • Gause, G. F. (1932). Experimental studies on the struggle for existence: I. Mixed population of two species of yeast. Journal of Experimental Biology, 9(4), 389-402.

  • Gellner, G., & McCann, K. S. (2016). Consistent role of weak and strong interactions in high- and low-diversity trophic food webs. Nature Communications, 7(1), 1-7. https://doi.org/10.1038/ncomms11180

  • Goldwyn, E. E., & Hastings, A. (2008). When can dispersal synchronize populations? Theoretical Population Biology, 73(3), 395-402. https://doi.org/10.1016/j.tpb.2007.11.012

  • Gotelli, N. J. (2008). A primer of ecology, Sunderland. Sinauer Associates.

  • Gouhier, T. C., Guichard, F., & Gonzalez, A. (2010). Synchrony and stability of food webs in metacommunities. The American Naturalist, 175(2), E16-E34. https://doi.org/10.1086/649579

  • Green, D. M. (2009). Coevolution of dispersal in a parasitoid–host system. Population Ecology, 51(2), 253-260. https://doi.org/10.1007/s10144-008-0131-3

  • Grover, J. P., Hudziak, J., & Grover, J. D. (1997). Resource competition (Vol. 19). Springer Science & Business Media

  • Gupta, R. P., & Yadav, D. K. (2020). Complex dynamical behavior of a three species prey–predator system with nonlinear harvesting. International Journal of Bifurcation and Chaos, 30(13), Article 2050195. https://doi.org/10.1142/S0218127420501953

  • Gyllenberg, M., Jiang, J., Niu, L., & Yan, P. (2019). On the dynamics of multi-species Ricker models admitting a carrying simplex. Journal of Difference Equations and Applications, 25(11), 1489-1530. https://doi.org/10.1080/10236198.2019.1663182

  • Hanski, I. (1998). Metapopulation dynamics. Nature, 396(6706), 41-49. https://doi.org/10.1038/23876

  • Hardin, G. (1960). The competitive exclusion principle. Science, 131(3409), 1292-1297.

  • He, X., & Ni, W. M. (2013). The effects of diffusion and spatial variation in Lotka–Volterra competition–diffusion system I: Heterogeneity vs. homogeneity. Journal of Differential Equations, 254(2), 528-546. https://doi.org/10.1016/j.jde.2012.08.032

  • Holyoak, M. (2000). Effects of nutrient enrichment on predator–prey metapopulation dynamics. Journal of Animal Ecology, 69(6), 985-997. https://doi.org/10.1111/j.1365-2656.2000.00453.x

  • Hovestadt, T., Kubisch, A., & Poethke, H. J. (2010). Information processing in models for density-dependent emigration: a comparison. Ecological Modelling, 221(3), 405-410. https://doi.org/10.1016/j.ecolmodel.2009.11.005

  • Hudson, P. J., & Cattadori, I. (1999). The Moran effect: A cause of population synchrony. Trends in Ecology and Evolution, 14(1), 1-2. https://doi.org/10.1016/S0169-5347 (98)

  • Hutchinson, G. E. (1961). The paradox of the plankton. The American Naturalist, 95(882), 137-145. https://doi.org/10.1086/282171

  • Kakishima, S., Morita, S., Yoshida, K., Ishida, A., Hayashi, S., Asami, T., Ito, H., Miller III, D. G., Uehara, T., Mori, S., & Hasegawa, E. (2015). The contribution of seed dispersers to tree species diversity in tropical rainforests. Royal Society Open Science, 2(10), Article 150330. https://doi.org/10.1098/rsos.150330

  • Karakoç, C., Clark, A. T., & Chatzinotas, A. (2020). Diversity and coexistence are influenced by time‐dependent species interactions in a predator–prey system. Ecology Letters, 23(6), 983-993. https://doi.org/10.1111/ele.13500

  • Kendall, B. E., Bjørnstad, O. N., Bascompte, J., Keitt, T. H., & Fagan, W. F. (2000). Dispersal, environmental correlation, and spatial synchrony in population dynamics. The American Naturalist, 155(5), 628-636. https://doi.org/10.1086/303350

  • Kindlmann, P., & Burel, F. (2008). Connectivity measures: A review. Landscape ecology, 23(8), 879-890. https://doi.org/10.1007/s10980-008-9245-4

  • Koch, H., Frickel, J., Valiadi, M., & Becks, L. (2014). Why rapid, adaptive evolution matters for community dynamics. Frontiers in Ecology and Evolution, 2, Article 17. https://doi.org/10.3389/fevo.2014.00017

  • Kokkoris, G. D., Troumbis, A. Y., & Lawton, J. H. (1999). Patterns of species interaction strength in assembled theoretical competition communities. Ecology Letters, 2(2), 70-74. https://doi.org/10.1046/j.1461-0248.1999.22058.x

  • Kondoh, M. (2008). Building trophic modules into a persistent food web. Proceedings of the National Academy of Sciences, 105(43), 16631-16635. https://doi.org/10.1073/pnas.0805870105

  • Kondoh, M., & Mougi, A. (2015). Interaction-type diversity hypothesis and interaction strength: The condition for the positive complexity-stability effect to arise. Population Ecology, 57(1), 21-27. https://doi.org/10.1007/s10144-014-0475-9

  • Kool, J. T., Moilanen, A., & Treml, E. A. (2013). Population connectivity: Recent advances and new perspectives. Landscape Ecology, 28(2), 165-185. https://doi.org/10.1007/s10980-012-9819-z

  • Kouvaris, N., Kugiumtzis, D., & Provata, A. (2011). Species mobility induces synchronization in chaotic population dynamics. Physical Review E, 84(3), Article 036211.

  • Ladeira, D. G., & de Oliveira, M. M. (2019). Chaotic coexistence in a resource–consumer model. Journal of Biological Systems, 27(02), 167-184. https://doi.org/10.1142/S0218339019500086

  • Lampert, A., & Hastings, A. (2016). Stability and distribution of predator–prey systems: Local and regional mechanisms and patterns. Ecology letters, 19(3), 279-288. https://doi.org/10.1111/ele.12565

  • Landi, P., Minoarivelo, H. O., Brännström, Å., Hui, C., & Dieckmann, U. (2018). Complexity and stability of ecological networks: A review of the theory. Population Ecology, 60(4), 319-345. https://doi.org/10.1007/s10144-018-0628-3

  • Lee, A. M., Sæther, B. E., & Engen, S. (2020). Spatial covariation of competing species in a fluctuating environment. Ecology, 101(1), Article e02901. https://doi.org/10.1002/ecy.2901

  • Leibold, M. A., & Chase, J. M. (2017). Metacommunity ecology (Vol. 59). Princeton University Press.

  • Liu, X., & Huang, Q. (2018). The dynamics of a harvested predator–prey system with Holling type IV functional response. Biosystems, 169, 26-39. https://doi.org/10.1016/j.biosystems.2018.05.005

  • Loreau, M. (2010). Linking biodiversity and ecosystems: Towards a unifying ecological theory. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1537), 49-60. https://doi.org/10.1098/rstb.2009.0155

  • McCann, K., Hastings, A., & Huxel, G. R. (1998). Weak trophic interactions and the balance of nature. Nature, 395(6704), 794-798. https://doi.org/10.1038/27427

  • Mitani, N., & Mougi, A. (2017). Population cycles emerging through multiple interaction types. Royal Society Open Science, 4(9), Article 170536. https://doi.org/10.1098/rsos.170536

  • Mittelbach, G. G., & McGill, B. J. (2019). Community ecology. Oxford University Press.

  • Mohd, M. H. (2018). Numerical bifurcation and stability analyses of partial differential equations with applications to competitive system in ecology. In SEAMS School on Dynamical Systems and Bifurcation Analysis (pp. 117-132). Springer. https://doi.org/10.1007/978-981-32-9832-3_7

  • Mohd, M. H. (2019). Diversity in interaction strength promotes rich dynamical behaviours in a three-species ecological system. Applied Mathematics and Computation, 353, 243-253. https://doi.org/10.1016/j.amc.2019.02.007

  • Mohd, M. H. B. (2016). Modelling the presence-absence of multiple species (Doctoral dissertation). University of Canterbury. http://dx.doi.org/10.26021/1670

  • Mohd, M. H., & Noorani, M. S. M. (2020). Local dispersal, trophic interactions and handling times mediate contrasting effects in prey-predator dynamics. Chaos, Solitons & Fractals, 142, Article 110497. https://doi.org/10.1016/j.chaos.2020.110497

  • Mohd, M. H., Murray, R., Plank, M. J., & Godsoe, W. (2016). Effects of dispersal and stochasticity on the presence–absence of multiple species. Ecological Modelling, 342, 49-59. https://doi.org/10.1016/j.ecolmodel.2016.09.026

  • Mohd, M. H., Murray, R., Plank, M. J., & Godsoe, W. (2017). Effects of biotic interactions and dispersal on the presence-absence of multiple species. Chaos, Solitons & Fractals, 99, 185-194. https://doi.org/10.1016/j.chaos.2017.04.012

  • Mohd, M. H., Murray, R., Plank, M. J., & Godsoe, W. (2018). Effects of different dispersal patterns on the presence-absence of multiple species. Communications in Nonlinear Science and Numerical Simulation, 56, 115-130. https://doi.org/10.1016/j.cnsns.2017.07.029

  • Mondor, E. B., Rosenheim, J. A., & Addicott, J. F. (2005). Predator-induced transgenerational phenotypic plasticity in the cotton aphid. Oecologia, 142(1), 104-108. https://doi.org/10.1007/s00442-004-1710-4

  • Mougi, A. (2012). Unusual predator–prey dynamics under reciprocal phenotypic plasticity. Journal of theoretical biology, 305, 96-102. https://doi.org/10.1016/j.jtbi.2012.04.012

  • Mougi, A. (2016). Stability of an adaptive hybrid community. Scientific reports, 6, Article 28181. https://doi.org/10.1038/srep28181

  • Mougi, A., & Kondoh, M. (2012). Diversity of interaction types and ecological community stability. Science, 337(6092), 349-351. https://doi.org/10.1126/science.1220529

  • Mougi, A., & Kondoh, M. (2014). Adaptation in a hybrid world with multiple interaction types: A new mechanism for species coexistence. Ecological Research, 29(2), 113-119. https://doi.org/10.1007/s11284-013-1111-4

  • Moustafa, M., Mohd, M. H., Ismail, A. I., & Abdullah, F. A. (2020). Dynamical analysis of a fractional-order eco-epidemiological model with disease in prey population. Advances in Difference Equations, 2020(1), Article 48. https://doi.org/10.1186/s13662-020-2522-5

  • Namba, T., Takeuchi, Y., & Banerjee, M. (2018). Stabilizing effect of intra-specific competition on prey-predator dynamics with intraguild predation. Mathematical Modelling of Natural Phenomena, 13(3), Article 29. https://doi.org/10.1051/mmnp/2018033

  • Nath, B., & Das, K. P. (2020). Harvesting in tri-trophic food chain stabilises the chaotic dynamics-conclusion drawn from Hastings and Powell model. International Journal of Dynamical Systems and Differential Equations, 10(2), 95-115. https://doi.org/10.1504/IJDSDE.2020.106025

  • Omaiye, O. J., & Mohd, M. H. (2018). Computational dynamical systems using XPPAUT. In SEAMS School on Dynamical Systems and Bifurcation Analysis (pp. 175-203). Springer. https://doi.org/10.1007/978-981-32-9832-3_10

  • Perrin, N., & Goudet, J. (2001). Inbreeding, kinship, and the evolution of natal dispersal. Dispersal, 123-142.

  • Poethke, H. J., & Hovestadt, T. (2002). Evolution of density–and patch–size–dependent dispersal rates. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269(1491), 637-645. https://doi.org/10.1098/rspb.2001.1936

  • Poethke, H. J., Hovestadt, T., & Mitesser, O. (2003). Local extinction and the evolution of dispersal rates: Causes and correlations. The American Naturalist, 161(4), 631-640. https://doi.org/10.1086/368224

  • Poethke, H. J., Pfenning, B., & Hovestadt, T. (2007). The relative contribution of individual and kin selection to the evolution of density-dependent dispersal rates. Evolutionary Ecology Research, 9(1), 41-50.

  • Poethke, H. J., Weisser, W. W., & Hovestadt, T. (2010). Predator-induced dispersal and the evolution of conditional dispersal in correlated environments. The American Naturalist, 175(5), 577-586. https://doi.org/10.1086/651595

  • Rozhnova, G., Metcalf, C. J. E., & Grenfell, B. T. (2013). Characterizing the dynamics of rubella relative to measles: the role of stochasticity. Journal of The Royal Society Interface, 10(88), Article 20130643. https://doi.org/10.1098/rsif.2013.0643

  • Selvam, A. G. M., & Dhineshbabu, R. (2020). Bifurcation and chaos in a discrete fractional order prey-predator system involving infection in prey. In Mathematical Models of Infectious Diseases and Social Issues (pp. 95-119). IGI Global.

  • Shabunin, A. V., Efimov, A., Tsekouras, G. A., & Provata, A. (2005). Scaling, cluster dynamics and complex oscillations in a multispecies Lattice Lotka–Volterra Model. Physica A: Statistical Mechanics and its Applications, 347, 117-136. https://doi.org/10.1016/j.physa.2004.09.021

  • Shabunin, A., & Provata, A. (2013). Lattice limit cycle dynamics: Influence of long-distance reactive and diffusive mixing. The European Physical Journal Special Topics, 222(10), 2547-2557. https://doi.org/10.1140/epjst/e2013-02036-5

  • Steiner, C. F., Stockwell, R. D., Kalaimani, V., & Aqel, Z. (2013). Population synchrony and stability in environmentally forced metacommunities. Oikos, 122(8), 1195-1206. https://doi.org/10.1111/j.1600-0706.2012.20936.x

  • Travis, J. M. (2001). The color of noise and the evolution of dispersal. Ecological Research, 16(1), 157-163. https://doi.org/10.1046/j.1440-1703.2001.00381.x

  • Tubay, J. M., Ito, H., Uehara, T., Kakishima, S., Morita, S., Togashi, T., Tainaka, K., Niraula, M. P., Casareto, B. E., Suzuki, Y. & Yoshimura, J. (2013). The paradox of enrichment in phytoplankton by induced competitive interactions. Scientific Reports, 3(1), 1-8. https://doi.org/10.1038/srep02835

  • Turchin, P. (2003). Complex population dynamics: A theoretical/empirical synthesis (Vol. 35). Princeton University Press.

  • Upadhyay, R. K., & Roy, P. (2016). Disease spread and its effect on population dynamics in heterogeneous environment. International Journal of Bifurcation and Chaos, 26(01), Article 1650004. https://doi.org/10.1142/S0218127416500048

  • Upadhyay, R. K., Roy, P., & Datta, J. (2015). Complex dynamics of ecological systems under nonlinear harvesting: Hopf bifurcation and Turing instability. Nonlinear Dynamics, 79(4), 2251-2270. https://doi.org/10.1007/s11071-014-1808-0

  • Vasseur, D. A., & Fox, J. W. (2009). Phase-locking and environmental fluctuations generate synchrony in a predator–prey community. Nature, 460(7258), 1007-1010. https://doi.org/10.1038/nature08208

  • Vellend, M. (2020). The theory of ecological communities (MPB-57). Princeton University Press.

  • Verma, T., & Gupta, A. K. (2020). Mean-field dispersal induced synchrony and stability in an epidemic model under patchy environment. Physica A: Statistical Mechanics and its Applications, 541, Article 123300. https://doi.org/10.1016/j.physa.2019.123300

  • Vogwill, T., Fenton, A., & Brockhurst, M. A. (2009). Dispersal and natural enemies interact to drive spatial synchrony and decrease stability in patchy populations. Ecology Letters, 12(11), 1194-1200. https://doi.org/10.1111/j.1461-0248.2009.01374.x

  • Wei, Z., Xia, Y., & Zhang, T. (2020). Stability and bifurcation analysis of an amensalism model with weak Allee effect. Qualitative Theory of Dynamical Systems, 19(1), Article 23. https://doi.org/10.1007/s12346-020-00341-0

  • Williams, P. D., & Hastings, A. (2013). Stochastic dispersal and population persistence in marine organisms. The American Naturalist, 182(2), 271-282.

  • Yaari, G., Ben-Zion, Y., Shnerb, N. M., & Vasseur, D. A. (2012). Consistent scaling of persistence time in metapopulations. Ecology, 93(5), 1214-1227. https://doi.org/10.1890/11-1077.1

  • Zhou, P. (2016). On a Lotka-Volterra competition system: diffusion vs advection. Calculus of Variations and Partial Differential Equations, 55(6), 137. https://doi.org/10.1007/s00526-016-1082-8

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles