e-ISSN 2231-8542
ISSN 1511-3701
Fatin Nabila, Lim Chee Hwa, Ahmad Mohiddin Mohd Ngesom and Wan Fatma Zuharah
Pertanika Journal of Tropical Agricultural Science, Pre-Press
DOI: https://doi.org/10.47836/pjtas.48.2.08
Keywords: Aedes, dengue, mosquito, ovitrap, pyriproxyfen
Published: 2025-02-17
Ovitrap deployment stands as a viable strategy for Aedes mosquito control. This study evaluated the efficacy of an autodissemination ovitrap called AedesTech Mosquito Home System (AMHS), which incorporates pyriproxyfen. The study encompassed laboratory trials. Within the laboratory trials, our investigations unfolded across two species of mosquitoes: Aedes albopictus and Aedes aegypti. Three distinct facets were explored in the laboratory trials: the influence of an attractant on the oviposition, the effect of trap positioning on oviposition, and the selection of oviposition sites. Our laboratory results indicated that the Mosquito Home Aqua (MHAQ) solution with attractant consistently attracted Ae. aegypti effectively (Welch’s Analysis of Variance) F (2,68.66) =5.22, p=0.01). However, its efficacy with Ae. albopictus was suboptimal compared to other treatments (Two-way ANOVA, F=0.16, df=2, p>0.05), highlighting the need for considering additional attractants. Notably, the placement of AMHS exhibited no discernible impact on its attractiveness for both mosquito species (T-test, p>0.05), underscoring the flexibility in trap deployment. The occurrence of simultaneous oviposition choices within the same replicates hinted at the possibility that the existing attractant in MHAQ did not significantly influence oviposition (p> 0.05). Therefore, eliminating the attractant is suggested to reduce the cost of AMHS production. Overall, our investigation underscores the promising potential of AMHS for Aedes control, especially Ae—aegypti and substantiated by robust statistical evidence gleaned from this controlled laboratory study.
Afandhi, A. (2020). Rice farming with application of integrated pest management (IPM): Analysis of social and economic sustainability (Case study in Besur Village, Lamongan District). Habitat, 31(2), 109–114. https://doi.org/10.21776/ub.habitat.2020.031.2.13
Ahbirami, R., Zuharah, W. F., Yahaya, Z. S., Dieng, H., Thiagaletchumi, M., Fadzly, N., Ahmad, A. H., & Bakar, S. A. (2014). Oviposition deterring and oviciding potentials of Ipomoea cairica L. leaf extract against dengue vectors. Tropical Biomedicine, 31(3), 456–465.
Barreto, E., Resende, M. C., Eiras, A. E., & Demarco Júnior, P. C. (2020). Evaluation of the baited ovitrap with natural attractant for monitoring Aedes spp. in Dili, Capital of East Timor. Ciencia e Saude Coletiva, 25(2), 665–672. https://doi.org/10.1590/1413-81232020252.12512018
Benz, U., Traore, M. M., Revay, E. E., Traore, A. S., Prozorov, A. M., Traoré, I., Junnila, A., Cui, L., Saldaitis, A., Kone, A. S., Yakovlev, R. V, Ziguime, Y., Gergely, P., Samake, S., Keita, A., Müller, G. C., Weitzel, T., & Rothe, C. (2024). Effect of textile colour on vector mosquito host selection: A simulated field study in Mali, West Africa. Journal of Travel Medicine, 31(4), taae049. https://doi.org/10.1093/jtm/taae049
Borel, D.-T., Elysée, N., Abdoul, T., Diane Leslie, Nk., Roland, B., Edmond, K., Parfait, A.-A., Timoléon, T., & Antonio-Nkondjio, C. (2021). Oviposition behavior of Culex quinquefasciatus and Anopheles coluzzii females according to the ovitrap color and presence of fertilizer in breeding sites. Fortune Journal of Health Sciences, 4, 207–220. https://doi.org/10.26502/fjhs018
Brisco, K. K., Jacobsen, C. M., Seok, S., Wang, X., Lee, Y., Akbari, O. S., & Cornel, A. J. (2023). Field evaluation of In2Care mosquito traps to control Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Hawai’i Island. Journal of Medical Entomology, 60(2), 364–372. https://doi.org/10.1093/jme/tjad005
Buckner, E. A., Williams, K. F., Marsicano, A. L., Latham, M. D., & Lesser, C. R. (2017). Evaluating the vector control potential of the In2Care® mosquito trap against Aedes aegypti and Aedes albopictus under semifield conditions in Manatee County, Florida. Journal of the American Mosquito Control Association, 33(3), 193–199. https://doi.org/10.2987/17-6642R.1
Campos, K. B., Alomar, A. A., Eastmond, B. H., Obara, M. T., S. Dias, L. dos, Rahman, R. U., & Alto, B. W. (2023). Assessment of insecticide resistance of Aedes aegypti (Diptera: Culicidae) populations to insect growth regulator pyriproxyfen, in the northeast region of Brazil. Journal of Vector Ecology, 48(1). https://doi.org/10.52707/1081-1710-48.1.12
Chen, Z., Liu, F., & Liu, N. (2019). Human odour coding in the yellow fever mosquito, Aedes aegypti. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-49753-2
de Jesus, C. P., Dias, F. B. S., Villela, D. M. A., & Maciel-De-Freitas, R. (2020). Ovitraps provide a reliable estimate of Wolbachia frequency during wMelBr strain deployment in a geographically isolated Aedes aegypti population. Insects, 11(2), 1–12. https://doi.org/10.3390/insects11020092
de Resende, M. C., Silva, I. M., Ellis, B. R., & Eiras, Á. E. (2013). A comparison of larval, ovitrap and MosquiTRAP surveillance for Aedes (Stegomyia) aegypti. Memorias Do Instituto Oswaldo Cruz, 108(8), 1024–1030. https://doi.org/10.1590/0074-0276130128
Dharmamuthuraja, D., D., R. P., M., I. L., Isvaran, K., Ghosh, S. K., & Ishtiaq, F. (2023). Determinants of Aedes mosquito larval ecology in a heterogeneous urban environment- a longitudinal study in Bengaluru, India. PLOS Neglected Tropical Diseases, 17(11), e0011702. https://doi.org/10.1371/journal.pntd.0011702
Dieng, H., Ellias, S. B., Satho, T., Ahmad, A. H., Abang, F., Ghani, I. A., Noor, S., Ahmad, H., Zuharah, W. F., Morales Vargas, R. E., Morales, N. P., Hipolito, C. N., Attrapadung, S., & Noweg, G. T. (2017). Coffee, its roasted form, and their residues cause birth failure and shorten lifespan in dengue vectors. Environmental Science and Pollution Research, 24(17), 14782–14794. https://doi.org/10.1007/s11356-017-8711-4
Dieng, H., Satho, T., Abang, F., Wydiamala, E., Kassim, N. A., Hashim, N. A., Zuharah, W. F., & Noweg, G. T. (2019). Sex before or after blood feeding: Mating activities of Aedes aegypti males under conditions of different densities and female blood feeding opportunities. Journal of Asia-Pacific Entomology, 22(1), 274–280. https://doi.org/10.1016/j.aspen.2018.12.025
Dieng, H., Satho, T., Binti Arzemi, N. A., Aliasan, N. E., Abang, F., Wydiamala, E., Miake, F., Zuharah, W. F., Abu Kassim, N. F., Morales Vargas, R. E., Morales, N. P., & Noweg, G. T. (2018). Exposure of a diurnal mosquito vector to floral mimics: Foraging responses, feeding patterns, and significance for sugar bait technology. Acta Tropica, 185, 230–238. https://doi.org/10.1016/j.actatropica.2018.05.019
do Nascimento, J. F., Palioto-Pescim, G. F., Pescim, R. R., Suganuma, M. S., Zequi, J. A. C., & Golias, H. C. (2022). Influence of abiotic factors on the oviposition of Aedes (Stegomyia) aegypti (Diptera: Culicidae) in Northern Paraná, Brazil. International Journal of Tropical Insect Science, 42(3), 2215–2220. https://doi.org/10.1007/s42690-022-00742-5
Drago, A., Spanò, G., Faccioni, G., & Massella, E. (2021). Olfactory responsiveness of Culex quinquefasciatus and Aedes albopictus (Diptera: Culicidae): Interactions between species, age and attractants. European Journal of Entomology, 118, 171–181. https://doi.org/10.14411/EJE.2021.018
Eiras, A. E., Costa, L. H., Batista-Pereira, L. G., Paixão, K. S., & Batista, E. P. A. (2021). Semi-field assessment of the Gravid Aedes Trap (GAT) with the aim of controlling Aedes (Stegomyia) aegypti populations. PLoS ONE, 16, 1–19. https://doi.org/10.1371/journal.pone.0250893
El-Ghany, N. M. A. (2020). Pheromones and chemical communication in insects. In Kontogiannatos, D., Kourti, A., & Ferreira Mendes, K. (Eds.), Pests, weeds and diseases in agricultural crop and animal husbandry production. IntechOpen. https://doi.org/10.5772/intechopen.92384
Fansiri, T., Pongsiri, A., Khongtak, P., Nitatsukprasert, C., Chittham, W., Jaichapor, B., Pathawong, N., Kijchalao, U., Tiangtrong, S., Singkhaimuk, P., & Ponlawat, A. (2022). The impact of insect growth regulators on adult emergence inhibition and the fitness of Aedes aegypti field populations in Thailand. Acta Tropica, 236, 106695. https://doi.org/10.1016/j.actatropica.2022.106695
Ferguson, H. M., Ng’habi, K. R., Walder, T., Kadungula, D., Moore, S. J., Lyimo, I., Russell, T. L., Urassa, H., Mshinda, H., Killeen, G. F., & Knols, B. G. J. (2008). Establishment of a large semi-field system for experimental study of African malaria vector ecology and control in Tanzania. Malaria Journal, 7, 1–15. https://doi.org/10.1186/1475-2875-7-158
Fiaz, M., Martínez, L. C., Plata-Rueda, A., Goncalves, W. G., De Souza, D. L. L., Cossolin, J. F. S., Carvalho, P. E. G. R., Martins, G. F., & Serrão, J. E. (2019). Pyriproxyfen, a juvenile hormone analog, damages midgut cells and interferes with behaviors of Aedes aegypti larvae. PeerJ, 2019(9), 1–21. https://doi.org/10.7717/peerj.7489
Friuli, M., Cafarchia, C., Cataldo, A., Lia, R. P., Otranto, D., Pombi, M., & Demitri, C. (2022). Proof of concept of biopolymer based hydrogels as biomimetic oviposition substrate to develop tiger mosquitoes (Aedes albopictus) cost‐effective lure and kill ovitraps. Bioengineering, 9(7), 267. https://doi.org/10.3390/bioengineering9070267
Gao, Q., Cao, H., Fan, J., Zhang, Z., Jin, S., Su, F., Leng, P., & Xiong, C. (2019). Field evaluation of Mosq-ovitrap, Ovitrap and a CO2-light trap for Aedes albopictus sampling in Shanghai, China. PeerJ, 2019(11), 1–19. https://doi.org/10.7717/peerj.8031
Gimenez, J. O., Alvarez, C. N., Almirón, W. R., & Stein, M. (2020). Meteorological variables associated with the temporal oviposition rate of Aedes aegypti (Diptera: Culicidae) in Resistencia city, Chaco province, Northeastern Argentina. Acta Tropica, 212, 105678. https://doi.org/10.1016/j.actatropica.2020.105678
Gómez, A., Seccacini, E., Zerba, E., & Licastro, S. (2011). Comparison of the insecticide susceptibilities of laboratory strains of Aedes aegypti and Aedes albopictus. Memorias Do Instituto Oswaldo Cruz, 106(8), 993–996. https://doi.org/10.1590/S0074-02762011000800015
Gopalsamy, B., Yazan, L. S., Abdul Razak, N. N., & Man, M. (2021). Association of temperature and rainfall with Aedes mosquito population in 17th college of Universiti Putra Malaysia. Malaysian Journal of Medicine and Health Sciences, 17(2), 78–84.
Gualberto, D. A., & Demayo, C. G. (2022). Laboratory and field evaluation of an innovated adult-larval mosquito trap for the capture of dengue vector mosquitoes. International Journal of Mosquito Research, 9(2), 44–50. https://doi.org/10.22271/23487941.2022.v9.i2a.600
Guo, X., Zhou, S., Wu, J., Zhang, X., Wang, Y., Li, Z., Chen, X. G., & Zhou, X. (2022). An experimental evaluation of toxicity effects of sodium chloride on oviposition, hatching and larval development of Aedes albopictus. Pathogens, 11(2). https://doi.org/10.3390/pathogens11020262
Harburguer, L., Licastro, S., Masuh, H., & Zerba, E. (2016). Biological and chemical characterization of a new larvicide ovitrap made of plastic with pyriproxyfen incorporated for Aedes aegypti (Diptera: Culicidae) control. Journal of Medical Entomology, 53(3), 647–652. https://doi.org/10.1093/jme/tjw022
Hashim, N. A., Ahmad, A. H., Talib, A., & Suwarno. (2019). Assessing dengue vector abundance in Penang Island by cluster analysis. IOP Conference Series: Earth and Environmental Science, 364(1), 012031. https://doi.org/10.1088/1755-1315/364/1/012031
Hogg, J. C., & Hurd, H. (1997). The effects of natural Plasmodium falciparum infection on the fecundity and mortality of Anopheles gambiae s.l. in north east Tanzania. Parasitology, 114(4), 325–331. https://doi.org/10.1017/S0031182096008542
Hustedt, J. C. (2020). Determining effectiveness of new approaches to dengue vector control in Cambodia [Doctoral dissertation, London School of Hygiene & Tropical Medicine]. https://doi.org/10.17037/PUBS.04656183
Hutcheson, R. P., Ebrahimi, B., Njiru, B. N., Foster, W. A., & Jany, W. (2022). Attraction of the mosquitoes Aedes aegypti and Aedes albopictus (Diptera: Culicidae) to a 3-part phytochemical blend in a mesocosm. Journal of Medical Entomology, 59(2), 440–445. https://doi.org/10.1093/jme/tjab195
Iyaloo, D. P., Elahee, K. B., Munglee, N. R., Latchooman, N., Ramprosand, S., Puryag, S., Ramdonee-Mosawa, V., & Bheecarry, A. (2021). Field evaluation of AedesTech Mosquito Home System ovitraps in Mauritius. Vector Biology and Control Division, Ministry of Health and Wellness, 1–15.
Khan, A., Ullah, M., Khan, G. Z., Ahmed, N., Shami, A., El Hadi Mohamed, R. A., Abd Al Galil, F. M., & Salman, M. (2023). Assessment of various colors combined with insecticides in devising ovitraps as attracting and killing tools for mosquitoes. Insects, 14(1), 25. https://doi.org/10.3390/insects14010025
Maïga, H., Yamada, H., Severin, B.-S. N., Carvalho, D. de O., Mamai, W., Herrero, R. A., Bourtzis, K., & Bouyer, J. (Eds.). (2017). Guidelines for routine colony maintenance of Aedes mosquito species—Version 1.0 (pp. 1–18). Food and Agriculture Organization of the United Nations International Atomic Energy Agency. https://www.iaea.org/sites/default/files/21/06/nafa-ipc-manual-guidelines-for-routine-colony-maintenance-of-aedes-mosquito-species-v1.0.pdf
Man, M., Bakar, W. A. W. A., Wang, L. Y., & Hwa, L. C. (2020). Amhs: Aedes mosquito home system with pyriproxyfen based formulation. International Journal of Emerging Trends in Engineering Research, 8(6), 2370–2374. https://doi.org/10.30534/ijeter/2020/27862020
Marin, G., Mahiba, B., Arivoli, S., & Tennyson, S. (2020). Does colour of ovitrap influence the ovipositional preference of Aedes aegypti Linnaeus 1762 (Diptera: Culicidae). ~ 11 ~ International Journal of Mosquito Research, 7(2), 11–15.
Martianasari, R., & Hamid, P. H. (2019). Larvicidal, adulticidal, and oviposition-deterrent activity of Piper betle L. essential oil to Aedes aegypti. Veterinary World, 12(3), 367–371. https://doi.org/10.14202/vetworld.2019.367-371
McGaughey, W. H., & Knight, K. L. (1967 Preoviposition activity of the black salt-marsh mosquito, Aedes taeniorhynchus (Diptera: Culicidae). Annals of the Entomological Society of America, 60(1), 107–115. https://doi.org/10.1093/aesa/60.1.107
Mohd Ngesom, A. M., Razi, A. A., Azizan, N. S., Wasi Ahmad, N., Md Lasim, A., Liang, Y., Greenhalgh, D., Min, J. C. S., Sahani, M., Hod, R., & Othman, H. (2021). Evaluation of a mosquito home system for controlling Aedes aegypti. Parasites and Vectors, 14(1), 1–14. https://doi.org/10.1186/s13071-021-04918-9
Moura, M. C. B. de M., de Oliveira, J. V., Pedreira, R. M., Tavares, A. de M., de Souza, T. A., de Lima, K. C., & Barbosa, I. R. (2020). Spatio-temporal dynamics of Aedes aegypti and Aedes albopictus oviposition in an urban area of northeastern Brazil. Tropical Medicine and International Health, 25(12), 1510–1521. https://doi.org/10.1111/tmi.13491
Musunzaji, P. S., Ndenga, B. A., Mzee, S., Abubakar, L. U., Uriel, D., Labeaud, A. D., & Mutuku, F. M. (2023). Oviposition preferences of Aedes aegypti in Msambweni, Kwale County, Kenya. Journal of the American Mosquito Control Association, 39(2). https://doi.org/10.2987/22-7103
Mwingira, V., Mboera, L. E. G., Dicke, M., & Takken, W. (2020). Exploiting the chemical ecology of mosquito oviposition behavior in mosquito surveillance and control: A review. Journal of Vector Ecology, 45(2), 155–179. https://doi.org/10.1111/jvec.12387
National Academies of Sciences Engineering and Medicine. (2019). Reproducibility and replicability in science. The National Academies Press. https://doi.org/10.17226/25303
Ninditya, V. I., Purwati, E., Utami, A. T., Marwaningtyaz, A. S., Fairuz, N. K., Widayanti, R., & Hamid, P. H. (2020). Artemisia vulgaris efficacies against various stages of Aedes aegypti. Veterinary World, 13(7), 1423–1429. https://doi.org/10.14202/vetworld.2020.1423-1429
Owolabi, D. O., & Bagbe, A. S. (2019). Assessment of physico-chemical and ecological variables in selected natural breeding sites of mosquitoes in Ibadan, Oyo State, Nigeria. Archives of Pharmacy & Pharmacology Research, 1(5), 1–5. https://doi.org/10.33552/appr.2019.01.000521
Parker, C. N., Pereira, R. M., Baldwin, R. W., Chaskopoulou, A., & Koehler, P. G. (2017). Laboratory evaluation of a novel lethal ovitrap for control of Aedes aegypti. Journal of Medical Entomology, 54(6), 1666–1673. https://doi.org/10.1093/jme/tjx161
Poh, A. H., Moghavvemi, M., Leong, C. S., Lau, Y. L., Ghandari, A. S., Apau, A., & Adikan, F. R. M. (2017). Collective behavior quantification on human odor effects against female Aedes aegypti mosquitoes-Open source development. PLoS ONE, 12(2), 1–17. https://doi.org/10.1371/journal.pone.0171555
Prameswarie, T., Ramayanti, I., Ghiffari, A., Hartanti, M. D., Anggina, D. N., Silvana, R., & Ismail, I. (2023). Aedes aegypti hatchability and larval development based on three different types of water. Majalah Kesehatan Indonesia, 4(1), 27–32. https://doi.org/10.47679/makein.2023124
Ratnasari, A., Jabal, A. R., Rahma, N., Rahmi, S. N., Karmila, M., & Wahid, I. (2020). The ecology of Aedes aegypti and Aedes albopictus larvae habitat in coastal areas of South Sulawesi, Indonesia. Biodiversitas, 21(10), 4648–4654. https://doi.org/10.13057/biodiv/d211025
Rebollar-Téllez, E., Loroño-Pino, M., Rodríguez-Angulo, E., & Farfán-Ale, J. (1995). Blood-feeding frequency and life expectancy of Aedes aegypti (Diptera: Culicidae) in an urban area of Merida city, state of Yucatan, Mexico. Rev Biomed, 6(January), 135–141.
Reza, M., & Ilmiawati, C. (2020). Laboratory testing of low concentration (<1 ppm) of copper to prolong mosquito pupation and adult emergence time: An alternative method to delay mosquito life cycle. PLoS ONE, 15(5), 1–9. https://doi.org/10.1371/journal.pone.0226859
Ridha, M. R., Hairani, B., Rosanji, A., Fadilly, A., & Meliyanie, G. (2020). Dengue vector surveillance (Aedes albopictus) with ovitrap and attractants from imperata immersion (Imperata cylindrica). International Journal of Public Health Science, 9(4), 286–291. https://doi.org/10.11591/ijphs.v9i4.20544
Ritchie, S. A., Buhagiar, T. S., Townsend, M., Hoffmann, A., Hurk, A. F. V. Den, McMahon, J. L., & Eiras, A. E. (2014). Field validation of the Gravid Aedes Trap (GAT) for collection of Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 51(1), 210–219. https://doi.org/10.1603/ME13105
Rizvi, S. A. H., George, J., Reddy, G. V. P., Zeng, X., & Guerrero, A. (2021). Latest developments in insect sex pheromone research and its application in agricultural pest management. Insects, 12(6), 1–26. https://doi.org/10.3390/insects12060484
Roque, R. A., & Eiras, Á. E. (2008). Calibration and evaluation of field cage for oviposition study with Aedes (Stegomyia) aegypti female (L.) (Diptera: Culicidae). Neotropical Entomology, 37(4), 478–485. https://doi.org/10.1590/S1519-566X2008000400018
Rueda, L. M. (2004). Pictorial keys for the identification of mosquitoes (Diptera: Culicidae) associated with dengue virus transmission. Zootaxa, 589(1), 1-60. https://doi.org/10.11646/zootaxa.589.1.1
Santos, C. S., Pie, M. R., da Rocha, T. C., & Navarro-Silva, M. A. (2019). Molecular identification of blood meals in mosquitoes (Diptera, Culicidae) in urban and forested habitats in southern Brazil. PLoS ONE, 14(2), 1–18. https://doi.org/10.1371/journal.pone.0212517
Snetselaar, J., Andriessen, R., Suer, R. A., Osinga, A. J., Knols, B. G., & Farenhorst, M. (2014). Development and evaluation of a novel contamination device that targets multiple life-stages of Aedes aegypti. Parasites and Vectors, 7(1), 1–10. https://doi.org/10.1186/1756-3305-7-200
Souza, D., de Camargo Guaraldo, A., Honório, N. A., Câmara, D. C. P., Sukow, N. M., Machado, S. T., Duarte dos Santos, C. N., & da Costa-Ribeiro, M. C. V. (2022). Spatial and temporal distribution of Aedes aegypti and Aedes albopictus oviposition on the Coast of Paraná, Brazil, a recent area of dengue virus transmission. Tropical Medicine and Infectious Disease, 7(9). https://doi.org/10.3390/tropicalmed7090246
Stupp, P., Rakes, M., Oliveira, D. C., Martins, L. N., Geisler, F. C. S., Ribeiro, L. P., Nava, D. E., & Bernardi, D. (2020). Acetogenin-based formulated bioinsecticides on Anastrepha fraterculus: Toxicity and potential use in insecticidal toxic baits. Neotropical Entomology, 49(2), 292–301. https://doi.org/10.1007/s13744-019-00747-9
Suria, M. M., Yap, P. C., Low, V. L., Abubakar, S., & Lee, H. Y. (2022). Lactic acid bacteria waste infusion as a source of attraction and oviposition stimulation of gravid female Aedes albopictus mosquitoes. Tropical Biomedicine, 39(4), 499–503. https://doi.org/10.47665/tb.39.4.004
Tawatsin, A., Thavara, U., Srivarom, N., Siriyasatien, P., & Wongtitirote, A. (2019). LeO-Trap®: A novel lethal ovitrap developed from combination of the physically attractive design of the ovitrap with biochemical attractant and larvicide for controlling Aedes aegypti (L.) and Ae. albopictus (Skuse) (Diptera: Culicidae). Biomedical Journal of Scientific & Technical Research, 21(5), 16183–16192. https://doi.org/10.26717/bjstr.2019.21.003664
Tchouassi, D. P., Agha, S. B., Villinger, J., Sang, R., & Torto, B. (2022). The distinctive bionomics of Aedes aegypti populations in Africa. Current Opinion in Insect Science, 54, 100986. https://doi.org/10.1016/j.cois.2022.100986
Thavara, U., Tawatsin, A., & Chompoosri, J. (2004). Evaluation of attractants and egg-laying substrate preference for oviposition by Aedes albopictus (Diptera: Culicidae). Journal of Vector Ecology : Journal of the Society for Vector Ecology, 29(1), 66–72.
Thongsripong, P., Carter, B. H., Ward, M. J., Jameson, S. B., Michaels, S. R., Yukich, J. O., & Wesson, D. M. (2023). Aedes aegypti and Aedes albopictus (Diptera: Culicidae) oviposition activity and the associated socio-environmental factors in the New Orleans area. Journal of Medical Entomology, 60(2), 392–400. https://doi.org/10.1093/jme/tjad007
Thornton, J., Gomes, B., Ayres, C., & Reimer, L. (2020). Insecticide resistance selection and reversal in two strains of Aedes aegypti [version 1; peer review: 1 approved with reservations]. Wellcome Open Research, 5(183), 1–21. https://doi.org/10.12688/WELLCOMEOPENRES.15974.1
Tsunoda, T., Nguyen, D. T. H. I., & Quynh, T. V. (2020). Effects of color and perforated lid on ovitrap preference of Aedes aegypti and Aedes albopictus. Journal of the American Mosquito Control Association, 36(4), 240–244. https://doi.org/10.2987/20-6948.1
Velo, E., Kadriaj, P., Mersini, K., Shukullari, A., Manxhari, B., Simaku, A., Hoxha, A., Caputo, B., Bolzoni, L., Rosà, R., Bino, S., Reiter, P., & Della Torre, A. (2016). Enhancement of Aedes albopictus collections by ovitrap and sticky adult trap. Parasites and Vectors, 9(1), 1–5. https://doi.org/10.1186/s13071-016-1501-x
Wang, L. M., Li, N., Zhang, M., Tang, Q., Lu, H. Z., Zhou, Q. Y., Niu, J. X., Xiao, L., Peng, Z. Y., Zhang, C., Liu, M., Wang, D. Q., & Deng, S. Q. (2023). The sex pheromone heptacosane enhances the mating competitiveness of sterile Aedes aegypti males. Parasites and Vectors, 16(1), 1–9. https://doi.org/10.1186/s13071-023-05711-6
Withanage, G. P., Viswakula, S. D., Gunawardene, Y. S., & Hapugoda, M. D. (2020). Use of novaluron-based autocidal gravid ovitraps to control Aedes dengue vector mosquitoes in the district of Gampaha, Sri Lanka. BioMed Research International, 2020(1), 9567019. https://doi.org/10.1155/2020/9567019
World Health Organization. (2012). Handbook for integrated vector management. https://doi.org/10.1564/v24_jun_14
World Health Organization. (2018). Efficacy-testing of traps for control of Aedes spp. mosquito vectors. http://apps.who.int/iris/bitstream/handle/10665/275801/WHO-CDS-NTD-VEM-2018.06-eng.pdf?ua=1
Yan, J., Kibech, R., & Stone, C. M. (2021). Differential effects of larval and adult nutrition on female survival, fecundity, and size of the yellow fever mosquito, Aedes aegypti. Frontiers in Zoology, 18(1), 1–9. https://doi.org/10.1186/s12983-021-00395-z
Yap, H. H., Lee, C. Y., Chong, N. L., Foo, A. E., & Lim, M. P. (1995). Oviposition site preference of Aedes albopictus in the laboratory. Journal of the American Mosquito Control Association, 11(1), 128–132.
Yazan, L. S., Paskaran, K., Gopalsamy, B., & Majid, R. A. (2020). Aedestech mosquito home system prevents the hatch of Aedes mosquito eggs and reduces its population. Pertanika Journal of Science and Technology, 28(1), 263–278.
Zuharah, W. F., & Lester, P. J. (2010). Can adults of the New Zealand mosquito Culex pervigilans (Bergorth) detect the presence of a key predator in larval habitats? Journal of Vector Ecology, 35(1), 100–105. https://doi.org/10.1111/j.1948-7134.2010.00065.x
ISSN 0128-7702
e-ISSN 2231-8534
Share this article
Recent Articles