e-ISSN 2231-8542
ISSN 1511-3701
Safaa Al-Awawdeh and Nurul Husna Shafie
Pertanika Journal of Tropical Agricultural Science, Pre-Press
DOI: https://doi.org/10.47836/pjtas.48.2.04
Keywords: Iron oxide, metagenomics, nanoparticles, polyphenols, proteomics
Published: 2025-02-17
Combining green tea polyphenols (GTPs) in iron oxide nanoparticles (IONPs) has attracted significant interest due to its potential therapeutic implications. This review investigates the beneficial effects of conjugating IONPs with polyphenols, highlighting their enhanced bioavailability and efficacy. The relationship between tea polyphenols and intestinal microbiota has been clarified by metagenomics research, highlighting how these relationships improve bioavailability. Moreover, studies elucidating the impact of metallic and magnetic nanoparticles on the composition of the gut microbiota provide insight into their function in regulating microbial diversity. Proteomic analyses have provided valuable insights into the molecular mechanisms underlying polyphenol-metallic nanoparticle interactions, offering a comprehensive understanding of their biological processes at the protein level. The study of polyphenol-nanoparticle interactions using metagenomics and proteomic approaches provides a promising direction for further research into possible medicinal uses and therapeutic applications.
Abdelhamid, H. N., & Wu, H.-F. (2015). Proteomics analysis of the mode of antibacterial action of nanoparticles and their interactions with proteins. TrAC Trends in Analytical Chemistry, 65, 30-46. https://doi.org/10.1016/j.trac.2014.09.010
Afzal, S., & Singh, N. K. (2022). Effect of zinc and iron oxide nanoparticles on plant physiology, seed quality and microbial community structure in a rice-soil-microbial ecosystem. Environmental Pollution, 314, 120224. https://doi.org/10.1016/j.envpol.2022.120224
Aggarwal, V., Tuli, H. S., Tania, M., Srivastava, S., Ritzer, E. E., Pandey, A., Aggarwal, D., Barwal, T. S., Jain, A., Kaur, G., Sak, K., Varol, M., & Bishayee, A. (2022). Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and advancement. Seminars in Cancer Biology, 80, 256-275. https://doi.org/10.1016/j.semcancer.2020.05.011
Agrawal, G. K., Timperio, A. M., Zolla, L., Bansal, V., Shukla, R., & Rakwal, R. (2013). Biomarker discovery and applications for foods and beverages: Proteomics to nanoproteomics. Journal of Proteomics, 93, 74-92. https://doi.org/10.1016/j.jprot.2013.04.014
Akhtar, M., Hussain, M., Naeem, F., Akhter, P., Jamil, F., Qamar, O. A., Bazmi, A. A., Tariq, N., Asrar, A., & Park, Y.-K. (2023). Green and sustainable synthesis of iron oxide nanoparticles for synergetic removal of melanoidin from ethanol distillery simulated model wastewater. Journal of Industrial and Engineering Chemistry, 132, 291-303. https://doi.org/10.1016/j.jiec.2023.11.022
Almeida, C. M. M., & Figueira, M. E. (2013). Chapter 25 - Vitamin K in green tea leaves. In V. R. Preedy (Ed.), Tea in health and disease prevention (pp. 295-305). Academic Press. https://doi.org/10.1016/B978-0-12-384937-3.00025-2
Alphandéry, E. (2019). Biodistribution and targeting properties of iron oxide nanoparticles for treatments of cancer and iron anemia disease. Nanotoxicology, 13(5), 573-596. https://doi.org/10.1080/17435390.2019.1572809
Anisong, N., Siripongvutikorn, S., Puttarak, P., & Wichienchot, S. (2023). Fecal fermentation and gut microbiota modulation of dietary fibre and polyphenols from Gnetum gnemon Linn. leaves. Bioactive Carbohydrates and Dietary Fibre, 30, 100380. https://doi.org/10.1016/j.bcdf.2023.100380
Bao, Q.-X., Liu, Y., Liang, Y.-Q., Weerasooriya, R., Li, H., Wu, Y.-C., & Chen, X. (2022). Tea polyphenols mediated Zero-valent Iron/Reduced graphene oxide nanocomposites for electrochemical determination of Hg2+. Journal of Electroanalytical Chemistry, 917, 116428. https://doi.org/10.1016/j.jelechem.2022.116428
Barnett, M. P. G., Cooney, J. M., Dommels, Y. E. M., Nones, K., Brewster, D. T., Park, Z., Butts, C. A., McNabb, W. C., Laing, W. A., & Roy, N. C. (2013). Modulation of colonic inflammation in Mdr1a−/− mice by green tea polyphenols and their effects on the colon transcriptome and proteome. The Journal of Nutritional Biochemistry, 24(10), 1678-1690. https://doi.org/10.1016/j.jnutbio.2013.02.007
Barreto, A., Carvalho, A., Campos, A., Osório, H., Pinto, E., Almeida, A., Trindade, T., Soares, A. M. V. M., Hylland, K., Loureiro, S., & Oliveira, M. (2020). Effects of gold nanoparticles in gilthead seabream — A proteomic approach. Aquatic Toxicology, 221, 105445. https://doi.org/10.1016/j.aquatox.2020.105445
Bond, T., & Derbyshire, E. (2019). Tea compounds and the gut microbiome: Findings from trials and mechanistic studies. Nutrients, 11(10), 2364. https://doi.org/10.3390/nu11102364
Braeuning, A., Oberemm, A., Görte, J., Böhmert, L., Juling, S., & Lampen, A. (2018). Comparative proteomic analysis of silver nanoparticle effects in human liver and intestinal cells. Journal of Applied Toxicology, 38(5), 638-648. https://doi.org/10.1002/jat.3568
Calani, L., Rio, D. D., Luisa Callegari, M., Morelli, L., & Brighenti, F. (2012). Updated bioavailability and 48h excretion profile of flavan-3-ols from green tea in humans. International Journal of Food Sciences and Nutrition, 63(5), 513-521. https://doi.org/10.3109/09637486.2011.640311
Cañon-Ibarra, A. F., Sanchez, L. T., Rosales Rivera, A., Blach, D., & Villa, C. C. (2023). Curcumin capped magnetic nanoparticles. Synthesis, characterization and photoinactivation activity against S. Aureus. Results in Chemistry, 5, 100908. https://doi.org/10.1016/j.rechem.2023.100908
Ceccherini, E., Signore, G., Tedeschi, L., Vozzi, F., Di Giorgi, N., Michelucci, E., Cecchettini, A., & Rocchiccioli, S. (2023). Proteomic modulation in TGF-β-treated cholangiocytes Induced by curcumin nanoparticles. International Journal of Molecular Sciences, 24(13), 10481. https://doi.org/10.3390/ijms241310481
Chacko, S. M., Thambi, P. T., Kuttan, R., & Nishigaki, I. (2010). Beneficial effects of green tea: A literature review. Chinese Medicine, 5, 13. https://doi.org/10.1186/1749-8546-5-13
Chan, Y.-T., Huang, J., Wong, H.-C., Li, J., & Zhao, D. (2023). Metabolic fate of black raspberry polyphenols in association with gut microbiota of different origins in vitro. Food Chemistry, 404, 134644. https://doi.org/10.1016/j.foodchem.2022.134644
Chen, Q., Shi, J., Mu, B., Chen, Z., Dai, W., & Lin, Z. (2020). Metabolomics combined with proteomics provides a novel interpretation of the changes in nonvolatile compounds during white tea processing. Food Chemistry, 332, 127412. https://doi.org/10.1016/j.foodchem.2020.127412
Chen, W., Zhu, X., Lu, Q., Zhang, L., Wang, X., & Liu, R. (2020). C-ring cleavage metabolites of catechin and epicatechin enhanced antioxidant activities through intestinal microbiota. Food Research International, 135, 109271. https://doi.org/10.1016/j.foodres.2020.109271
Chugh, D., Viswamalya, V. S., & Das, B. (2021). Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process. Journal of Genetic Engineering and Biotechnology, 19(1), 126. https://doi.org/10.1186/s43141-021-00228-w
Daou, I., Moukrad, N., Zegaoui, O., & Rhazi, F. F. (2018). Antimicrobial activity of ZnO-TiO(2) nanomaterials synthesized from three different precursors of ZnO: Influence of ZnO/TiO(2) weight ratio. Water Science & Technology, 77(5-6), 1238-1249. https://doi.org/10.2166/wst.2017.647
Dey, P., Chaudhuri, S. R., Efferth, T., & Pal, S. (2021). The intestinal 3M (microbiota, metabolism, metabolome) zeitgeist - from fundamentals to future challenges. Free Radical Biology and Medicine, 176, 265-285. https://doi.org/10.1016/j.freeradbiomed.2021.09.026
Doumandji, Z., Safar, R., Lovera-Leroux, M., Nahle, S., Cassidy, H., Matallanas, D., Rihn, B., Ferrari, L., & Joubert, O. (2020). Protein and lipid homeostasis altered in rat macrophages after exposure to metallic oxide nanoparticles. Cell Biology and Toxicology, 36(1), 65-82. https://doi.org/10.1007/s10565-019-09484-6
Enteshari, N. R., Kazemipour, N., Esmaeili, A., Beheshti, S., & Nazifi, S. (2018). Using superparamagnetic iron oxide nanoparticles to enhance bioavailability of quercetin in the intact rat brain. BMC Pharmacology and Toxicology, 19, 59. https://doi.org/10.1186/s40360-018-0249-7
Galati, G., & O’Brien, P. J. (2004). Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radical Biology and Medicine, 37(3), 287-303. https://doi.org/10.1016/j.freeradbiomed.2004.04.034
Gao, X., Li, R., Yourick, J. J., & Sprando, R. L. (2022). Transcriptomic and proteomic responses of silver nanoparticles in hepatocyte-like cells derived from human induced pluripotent stem cells. Toxicology in Vitro, 79, 105274. https://doi.org/10.1016/j.tiv.2021.105274
Garza, D. R., & Dutilh, B. E. (2015). From cultured to uncultured genome sequences: metagenomics and modeling microbial ecosystems. Cellular and Molecular Life Sciences, 72(22), 4287-4308. https://doi.org/10.1007/s00018-015-2004-1
Hajipour, M. J., Fromm, K. M., Ashkarran, A. A., de Aberasturi, D. J., de Larramendi, I. R., Rojo, T., Serpooshan, V., Parak, W. J., & Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499-511. https://doi.org/10.1016/j.tibtech.2012.06.004
Han, X. Y., Du, W. L., Fan, C. L., & Xu, Z. R. (2010). ORIGINAL ARTICLE: Changes in composition a metabolism of caecal microbiota in rats fed diets supplemented with copper-loaded chitosan nanoparticles. Journal of Animal Physiology and Animal Nutrition, 94(5), e138-e144. https://doi.org/10.1111/j.1439-0396.2010.00995.x
Hasan, M., Xue, H., Zafar, A., ul Haq, A., Tariq, T., Ahmad, M. M., Hassan, S. G., Javed, H. U., Chen, X., & Shu, X. (2023). Biochemical surface functionalization of iron oxide for efficient biomarker detector: A new visions of nano-bio interactions. Applied Surface Science Advances, 18, 100486. https://doi.org/10.1016/j.apsadv.2023.100486
Ilett, E. E., Jørgensen, M., Noguera-Julian, M., Daugaard, G., Murray, D. D., Helleberg, M., Paredes, R., Lundgren, J., Sengeløv, H., & MacPherson, C. (2019). Gut microbiome comparability of fresh-frozen versus stabilized-frozen samples from hospitalized patients using 16S rRNA gene and shotgun metagenomic sequencing. Scientific Reports, 9(1), 13351. https://doi.org/10.1038/s41598-019-49956-7
Jamwal, K., Bhattacharya, S., & Puri, S. (2018). Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. Journal of Applied Research on Medicinal and Aromatic Plants, 9, 26-38. https://doi.org/10.1016/j.jarmap.2017.12.003
Karas, D., Ulrichová, J., & Valentová, K. (2017). Galloylation of polyphenols alters their biological activity. Food and Chemical Toxicology, 105, 223-240. https://doi.org/10.1016/j.fct.2017.04.021
Li, A., Kou, R., Liu, H., Chen, M., Wang, J., Liu, Q., Xing, X., Zhang, B., Dong, L., & Wang, S. (2023). Multi-omics analyses reveal relationships among polyphenol-rich oolong tea consumption, gut microbiota, and metabolic profile: A pilot study. Food Chemistry, 426, 136653. https://doi.org/10.1016/j.foodchem.2023.136653
Li, F., Jin, H., Xiao, J., Yin, X., Liu, X., Li, D., & Huang, Q. (2018). The simultaneous loading of catechin and quercetin on chitosan-based nanoparticles as effective antioxidant and antibacterial agent. Food Research International, 111, 351-360. https://doi.org/10.1016/j.foodres.2018.05.038
Li, F., Wang, Y., Li, D., Sun-Waterhouse, D., Chen, Y., & Qiao, X. (2019). Nanoparticle-based encapsulation of green tea polyphenols: An approach to enhance their bioavailability and therapeutic efficacy. In L. Melton, F. Shahidi & P. Varelis (Eds.), Encyclopedia of food chemistry (pp. 695-700). Academic Press. https://doi.org/10.1016/B978-0-08-100596-5.21514-X
Li, J., Wang, Y., & Suh, J. H. (2022). Multi-omics approach in tea polyphenol research regarding tea plant growth, development and tea processing: Current technologies and perspectives. Food Science and Human Wellness, 11(3), 524-536. https://doi.org/10.1016/j.fshw.2021.12.010
Li, J., Yang, S., Lei, R., Gu, W., Qin, Y., Ma, S., Chen, K., Chang, Y., Bai, X., Xia, S., Wu, C., & Xing, G. (2018). Oral administration of rutile and anatase TiO(2) nanoparticles shifts mouse gut microbiota structure. Nanoscale, 10(16), 7736-7745. https://doi.org/10.1039/c8nr00386f
Li, Y., Zhang, X., & Deng, C. (2013). Functionalized magnetic nanoparticles for sample preparation in proteomics and peptidomics analysis [10.1039/C3CS60156K]. Chemical Society Reviews, 42(21), 8517-8539. https://doi.org/10.1039/C3CS60156K
Li, Z., Jiang, H., Xu, C., & Gu, L. (2015). A review: Using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocolloids, 43, 153-164.
Liu, Z., Bruins, M. E., Ni, L., & Vincken, J.-P. (2018). Green and black tea phenolics: Bioavailability, transformation by colonic microbiota, and modulation of colonic microbiota. Journal of Agricultural and Food Chemistry, 66(32), 8469-8477. https://doi.org/10.1021/acs.jafc.8b02233
Low, L. E., Lim, H. P., Ong, Y. S., Siva, S. P., Sia, C. S., Goh, B.-H., Chan, E. S., & Tey, B. T. (2022). Stimuli-controllable iron oxide nanoparticle assemblies: Design, manipulation and bio-applications. Journal of Controlled Release, 345, 231-274. https://doi.org/10.1016/j.jconrel.2022.03.024
Lu, Q. Y., Yang, Y., Jin, Y. S., Zhang, Z. F., Heber, D., Li, F. P., Dubinett, S. M., Sondej, M. A., Loo, J. A., & Rao, J. Y. (2009). Effects of green tea extract on lung cancer A549 cells: Proteomic identification of proteins associated with cell migration. Proteomics, 9(3), 757-767. https://doi.org/10.1002/pmic.200800019
Lynch, M. D. J., Bartram, A. K., & Neufeld, J. D. (2012). Targeted recovery of novel phylogenetic diversity from next-generation sequence data. The ISME Journal, 6(11), 2067-2077. https://doi.org/10.1038/ismej.2012.50
Ma, Y., Zhang, J., Yu, N., Shi, J., Zhang, Y., Chen, Z., & Jia, G. (2023). Effect of nanomaterials on gut microbiota. Toxics, 11(4), 384. https://doi.org/10.3390/toxics11040384
Matarraz, S., González-González, M., Jara, M., Orfao, A., & Fuentes, M. (2011). New technologies in cancer. Protein microarrays for biomarker discovery. Clinical and Translational Oncology, 13(3), 156-161. https://doi.org/10.1007/s12094-011-0635-8
Mazzara, S., Sinisi, A., Cardaci, A., Rossi, R. L., Muratori, L., Abrignani, S., & Bombaci, M. (2015). Two of them do it better: Novel serum biomarkers improve autoimmune hepatitis diagnosis. PLOS ONE, 10(9), e0137927. https://doi.org/10.1371/journal.pone.0137927
Meegahakumbura, M. K., Wambulwa, M. C., Li, M.-M., Thapa, K. K., Sun, Y.-S., Möller, M., Xu, J.-C., Yang, J.-B., Liu, J., Liu, B.-Y., Li, D.-Z., & Gao, L.-M. (2018). Domestication origin and breeding history of the tea plant (Camellia sinensis) in China and India Based on nuclear microsatellites and cpDNA sequence data. Frontiers in Plant Science, 8, 2270. https://doi.org/10.3389/fpls.2017.02270
Meena, J., Gupta, A., Ahuja, R., Singh, M., Bhaskar, S., & Panda, A. K. (2020). Inorganic nanoparticles for natural product delivery: A review. Environmental Chemistry Letters, 18(6), 2107-2118. https://doi.org/10.1007/s10311-020-01061-2
Mhatre, S., Srivastava, T., Naik, S., & Patravale, V. (2021). Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. Phytomedicine, 85, 153286. https://doi.org/10.1016/j.phymed.2020.153286
Mollarasouli, F., Zor, E., Ozcelikay, G., & Ozkan, S. A. (2021). Magnetic nanoparticles in developing electrochemical sensors for pharmaceutical and biomedical applications. Talanta, 226, 122108. https://doi.org/10.1016/j.talanta.2021.122108
Mujtaba, H., Jat, B. L., & Gani, A. (2023). Effect of green tea polyphenols on the techno-functional and nutraceutical properties of himalayan rice (Mushk Budji). Bioactive Carbohydrates and Dietary Fibre, 29, 100344. https://doi.org/10.1016/j.bcdf.2022.100344
Nobahari, M., Shahanipour, K., Fatahian, S., & Monajemi, R. (2023). Evaluation of cytotoxic activity of loaded catechin into iron oxide nanoparticles coated with sodium alginate and hydroxyapatite against human HT-29 colon adenocarcinoma and breast cancer MCF-7 cells. Russian Journal of Bioorganic Chemistry, 49(5), 1049-1058. https://doi.org/10.1134/S1068162023050126
Pan, Z., Xie, R., & Chen, Z. (2023). One-step simultaneous biomass synthesis of iron nanoparticles using tea extracts for the removal of metal(loid)s in acid mine drainage. Chemosphere, 337, 139366. https://doi.org/10.1016/j.chemosphere.2023.139366
Pasrija, D., & Chinnaswamy, A. (2015). Techniques for extraction of green tea polyphenols: A review. Food and Bioprocess Technology, 8, 935-950. https://doi.org/10.1007/s11947-015-1479-y
Plachtová, P., Medříková, Z., Zbořil, R., Tuček, J., Varma, R. S., & Maršálek, B. (2018). Iron and iron oxide nanoparticles synthesized with green tea extract: Differences in ecotoxicological profile and ability to degrade malachite green. ACS Sustainable Chemistry and Engineering, 6(7), 8679-8687. https://doi.org/10.1021/acssuschemeng.8b00986
Saha, S., Ali, M. R., Khaleque, M. A., Bacchu, M. S., Aly Saad Aly, M., & Khan, M. Z. H. (2023). Metal oxide nanocarrier for targeted drug delivery towards the treatment of global infectious diseases: A review. Journal of Drug Delivery Science and Technology, 86, 104728. https://doi.org/10.1016/j.jddst.2023.104728
Sahraeian, S., Rashidinejad, A., & Golmakani, M.-T. (2024). Recent advances in the conjugation approaches for enhancing the bioavailability of polyphenols. Food Hydrocolloids, 146, 109221. https://doi.org/10.1016/j.foodhyd.2023.109221
Sankaranarayanan, S. A., Thomas, A., Revi, N., Ramakrishna, B., & Rengan, A. K. (2022). Iron oxide nanoparticles for theranostic applications - Recent advances. Journal of Drug Delivery Science and Technology, 70, 103196. https://doi.org/10.1016/j.jddst.2022.103196
Shao, C., Chen, L., Lu, C., Shen, C. L., & Gao, W. (2011). A gel-based proteomic analysis of the effects of green tea polyphenols on ovariectomized rats. Nutrition, 27(6), 681-686. https://doi.org/10.1016/j.nut.2010.05.019
Sharma, A., & Tapadia, K. (2016). Green tea-synthesized magnetic nanoparticles accelerate the microwave digestion of proteins analyzed by MALDI-TOF-MS. Journal of the Iranian Chemical Society, 13(9), 1723-1732. https://doi.org/10.1007/s13738-016-0889-8
Sidhu, A., Verma, N., & Kaushal, P. (2022). Role of biogenic capping agents in the synthesis of metallic nanoparticles and evaluation of their therapeutic potential. Frontiers in Nanotechnology, 3, 801620. https://doi.org/10.3389/fnano.2021.801620
Singh, K. K., Senapati, K. K., & Sarma, K. C. (2017). Synthesis of superparamagnetic Fe3O4 nanoparticles coated with green tea polyphenols and their use for removal of dye pollutant from aqueous solution. Journal of Environmental Chemical Engineering, 5(3), 2214-2221. https://doi.org/10.1016/j.jece.2017.04.022
Singh, R., Akhtar, N., & Haqqi, T. M. (2010). Green tea polyphenol epigallocatechin-3-gallate: Inflammation and arthritis. Life Sciences, 86(25-26), 907-918. https://doi.org/10.1016/j.lfs.2010.04.013
Sinija, V. R., & Mishra, H. N. (2008). Green tea: Health benefits. Journal of Nutritional and Environmental Medicine, 17(4), 232-242. https://doi.org/10.1080/13590840802518785
Sohm, B., Immel, F., Bauda, P., & Pagnout, C. (2015). Insight into the primary mode of action of TiO2 nanoparticles on Escherichia coli in the dark. PROTEOMICS, 15(1), 98-113. https://doi.org/10.1002/pmic.201400101
Spagnoletti, F. N., Kronberg, F., Spedalieri, C., Munarriz, E., & Giacometti, R. (2021). Protein corona on biogenic silver nanoparticles provides higher stability and protects cells from toxicity in comparison to chemical nanoparticles. Journal of Environmental Management, 297, 113434. https://doi.org/10.1016/j.jenvman.2021.113434
Stalmach, A., Mullen, W., Steiling, H., Williamson, G., Lean, M. E. J., & Crozier, A. (2010). Absorption, metabolism, and excretion of green tea flavan-3-ols in humans with an ileostomy. Molecular Nutrition and Food Research, 54(3), 323-334. https://doi.org/10.1002/mnfr.200900194
Su, J., Liao, T., Ren, Z., Kuang, Y., Yu, W., Qiao, Q., Jiang, B., Chen, X., Xu, Z., & Li, C. (2023). Polydopamine nanoparticles coated with a metal-polyphenol network for enhanced photothermal/chemodynamic cancer combination therapy. International Journal of Biological Macromolecules, 238, 124088. https://doi.org/10.1016/j.ijbiomac.2023.124088
Sudhakar, C., Poonkothai, M., Selvankmuar, T., Selvam, K., Rajivgandhi, G., Siddiqi, M. Z., Alharbi, N. S., Kadaikunnan, S., & Vijayakumar, N. (2021). Biomimetic synthesis of iron oxide nanoparticles using Canthium coromandelicum leaf extract and its antibacterial and catalytic degradation of Janus green. Inorganic Chemistry Communications, 133, 108977. https://doi.org/10.1016/j.inoche.2021.108977
Venkata, K., Chiu, H. F., Cheng, J. C., Chang, Y. H., Lu, Y. Y., Han, Y. C., Shen, Y. C., Tsai, K. S., & Wang, C. K. (2018). Comparative studies on the hypolipidemic, antioxidant and hepatoprotective activities of catechin-enriched green and oolong tea in a double-blind clinical trial. Food and Function, 9(2), 1205-1213. https://doi.org/10.1039/c7fo01449j
Wen, J.-J., Li, M.-Z., Chen, C.-H., Hong, T., Yang, J.-R., Huang, X.-J., Geng, F., Hu, J.-L., & Nie, S.-P. (2023). Tea polyphenol and epigallocatechin gallate ameliorate hyperlipidemia via regulating liver metabolism and remodeling gut microbiota. Food Chemistry, 404, 134591. https://doi.org/10.1016/j.foodchem.2022.134591
Williams, K., Milner, J., Boudreau, M. D., Gokulan, K., Cerniglia, C. E., & Khare, S. (2015). Effects of subchronic exposure of silver nanoparticles on intestinal microbiota and gut-associated immune responses in the ileum of Sprague-Dawley rats. Nanotoxicology, 9(3), 279-289. https://doi.org/10.3109/17435390.2014.921346
Xiao, C., Li, H., Zhao, Y., Zhang, X., & Wang, X. (2020). Green synthesis of iron nanoparticle by tea extract (polyphenols) and its selective removal of cationic dyes. Journal of Environmental Management, 275, 111262. https://doi.org/10.1016/j.jenvman.2020.111262
Yin, Y., Cui, L., Yan, F., Zhang, Z., Li, W., & Wang, L. (2017). Epigallocatechin gallate based magnetic gold nanoshells nanoplatform for cancer theranostic applications. Journal of Materials Chemistry B, 5(3), 454-463. https://doi.org/10.1039/C6TB02408D
Yuan, X., Long, Y., Ji, Z., Gao, J., Fu, T., Yan, M., Zhang, L., Su, H., Zhang, W., Wen, X., Pu, Z., Chen, H., Wang, Y., Gu, X., Yan, B., Kaliannan, K., & Shao, Z. (2018). Green tea liquid consumption alters the human intestinal and oral microbiome. Molecular Nutrition and Food Research, 62(12), e1800178. https://doi.org/10.1002/mnfr.201800178
Zhang, Q., Zhang, J., Zhang, J., Xu, D., Li, Y., Liu, Y., Zhang, X., Zhang, R., Wu, Z., & Weng, P. (2021). Antimicrobial effect of tea polyphenols against foodborne pathogens: A review. Journal of Food Protection, 84(10), 1801-1808. https://doi.org/10.4315/JFP-21-043
Zhang, S., Xu, M., Sun, X., Shi, H., & Zhu, J. (2022). Green tea extract alters gut microbiota and their metabolism of adults with metabolic syndrome in a host-free human colonic model. Food Research International, 160, 111762. https://doi.org/10.1016/j.foodres.2022.111762
Zhang, T., Li, D., Zhu, X., Zhang, M., Guo, J., & Chen, J. (2022). Nano-Al2O3 particles affect gut microbiome and resistome in an in vitro simulator of the human colon microbial ecosystem. Journal of Hazardous Materials, 439, 129513. https://doi.org/10.1016/j.jhazmat.2022.129513
Zhang, Z., Qiu, C., Li, X., McClements, D. J., Jiao, A., Wang, J., & Jin, Z. (2021). Advances in research on interactions between polyphenols and biology-based nano-delivery systems and their applications in improving the bioavailability of polyphenols. Trends in Food Science and Technology, 116, 492-500. https://doi.org/10.1016/j.tifs.2021.08.009
Zhao, L., Song, X., Ouyang, X., Zhou, J., Li, J., & Deng, D. (2021). Bioinspired virus-like Fe3O4/Au@C nanovector for programmable drug delivery via hierarchical targeting. ACS Applied Materials and Interfaces, 13(42), 49631-49641. https://doi.org/10.1021/acsami.1c11261
Zhao, T., Chen, Q., Chen, Z., He, T., Zhang, L., Huang, Q., Liu, W., Zeng, X., & Zhang, Y. (2024). Anti-obesity effects of mulberry leaf extracts on female high-fat diet-induced obesity: Modulation of white adipose tissue, gut microbiota, and metabolic markers. Food Research International, 177, 113875. https://doi.org/10.1016/j.foodres.2023.113875
Zhu, X., Li, H., Zhou, L., Jiang, H., Ji, M., & Chen, J. (2023). Evaluation of the gut microbiome alterations in healthy rats after dietary exposure to different synthetic ZnO nanoparticles. Life Sciences, 312, 121250. https://doi.org/10.1016/j.lfs.2022.121250
ISSN 0128-7702
e-ISSN 2231-8534
Share this article
Recent Articles