PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Pre-Press / JTAS-3129-2024

 

Tea Polyphenols and Iron Oxide Nanoparticles: Therapeutic Benefits, Microbiota Interactions, and Proteomic Perspectives

Safaa Al-Awawdeh and Nurul Husna Shafie

Pertanika Journal of Tropical Agricultural Science, Pre-Press

DOI: https://doi.org/10.47836/pjtas.48.2.04

Keywords: Iron oxide, metagenomics, nanoparticles, polyphenols, proteomics

Published: 2025-02-17

Combining green tea polyphenols (GTPs) in iron oxide nanoparticles (IONPs) has attracted significant interest due to its potential therapeutic implications. This review investigates the beneficial effects of conjugating IONPs with polyphenols, highlighting their enhanced bioavailability and efficacy. The relationship between tea polyphenols and intestinal microbiota has been clarified by metagenomics research, highlighting how these relationships improve bioavailability. Moreover, studies elucidating the impact of metallic and magnetic nanoparticles on the composition of the gut microbiota provide insight into their function in regulating microbial diversity. Proteomic analyses have provided valuable insights into the molecular mechanisms underlying polyphenol-metallic nanoparticle interactions, offering a comprehensive understanding of their biological processes at the protein level. The study of polyphenol-nanoparticle interactions using metagenomics and proteomic approaches provides a promising direction for further research into possible medicinal uses and therapeutic applications.

  • Abdelhamid, H. N., & Wu, H.-F. (2015). Proteomics analysis of the mode of antibacterial action of nanoparticles and their interactions with proteins. TrAC Trends in Analytical Chemistry, 65, 30-46. https://doi.org/10.1016/j.trac.2014.09.010

    Afzal, S., & Singh, N. K. (2022). Effect of zinc and iron oxide nanoparticles on plant physiology, seed quality and microbial community structure in a rice-soil-microbial ecosystem. Environmental Pollution, 314, 120224. https://doi.org/10.1016/j.envpol.2022.120224

    Aggarwal, V., Tuli, H. S., Tania, M., Srivastava, S., Ritzer, E. E., Pandey, A., Aggarwal, D., Barwal, T. S., Jain, A., Kaur, G., Sak, K., Varol, M., & Bishayee, A. (2022). Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and advancement. Seminars in Cancer Biology, 80, 256-275. https://doi.org/10.1016/j.semcancer.2020.05.011

    Agrawal, G. K., Timperio, A. M., Zolla, L., Bansal, V., Shukla, R., & Rakwal, R. (2013). Biomarker discovery and applications for foods and beverages: Proteomics to nanoproteomics. Journal of Proteomics, 93, 74-92. https://doi.org/10.1016/j.jprot.2013.04.014

    Akhtar, M., Hussain, M., Naeem, F., Akhter, P., Jamil, F., Qamar, O. A., Bazmi, A. A., Tariq, N., Asrar, A., & Park, Y.-K. (2023). Green and sustainable synthesis of iron oxide nanoparticles for synergetic removal of melanoidin from ethanol distillery simulated model wastewater. Journal of Industrial and Engineering Chemistry, 132, 291-303. https://doi.org/10.1016/j.jiec.2023.11.022

    Almeida, C. M. M., & Figueira, M. E. (2013). Chapter 25 - Vitamin K in green tea leaves. In V. R. Preedy (Ed.), Tea in health and disease prevention (pp. 295-305). Academic Press. https://doi.org/10.1016/B978-0-12-384937-3.00025-2

    Alphandéry, E. (2019). Biodistribution and targeting properties of iron oxide nanoparticles for treatments of cancer and iron anemia disease. Nanotoxicology, 13(5), 573-596. https://doi.org/10.1080/17435390.2019.1572809

    Anisong, N., Siripongvutikorn, S., Puttarak, P., & Wichienchot, S. (2023). Fecal fermentation and gut microbiota modulation of dietary fibre and polyphenols from Gnetum gnemon Linn. leaves. Bioactive Carbohydrates and Dietary Fibre, 30, 100380. https://doi.org/10.1016/j.bcdf.2023.100380

    Bao, Q.-X., Liu, Y., Liang, Y.-Q., Weerasooriya, R., Li, H., Wu, Y.-C., & Chen, X. (2022). Tea polyphenols mediated Zero-valent Iron/Reduced graphene oxide nanocomposites for electrochemical determination of Hg2+. Journal of Electroanalytical Chemistry, 917, 116428. https://doi.org/10.1016/j.jelechem.2022.116428

    Barnett, M. P. G., Cooney, J. M., Dommels, Y. E. M., Nones, K., Brewster, D. T., Park, Z., Butts, C. A., McNabb, W. C., Laing, W. A., & Roy, N. C. (2013). Modulation of colonic inflammation in Mdr1a−/− mice by green tea polyphenols and their effects on the colon transcriptome and proteome. The Journal of Nutritional Biochemistry, 24(10), 1678-1690. https://doi.org/10.1016/j.jnutbio.2013.02.007

    Barreto, A., Carvalho, A., Campos, A., Osório, H., Pinto, E., Almeida, A., Trindade, T., Soares, A. M. V. M., Hylland, K., Loureiro, S., & Oliveira, M. (2020). Effects of gold nanoparticles in gilthead seabream — A proteomic approach. Aquatic Toxicology, 221, 105445. https://doi.org/10.1016/j.aquatox.2020.105445

    Bond, T., & Derbyshire, E. (2019). Tea compounds and the gut microbiome: Findings from trials and mechanistic studies. Nutrients, 11(10), 2364. https://doi.org/10.3390/nu11102364

    Braeuning, A., Oberemm, A., Görte, J., Böhmert, L., Juling, S., & Lampen, A. (2018). Comparative proteomic analysis of silver nanoparticle effects in human liver and intestinal cells. Journal of Applied Toxicology, 38(5), 638-648. https://doi.org/10.1002/jat.3568

    Calani, L., Rio, D. D., Luisa Callegari, M., Morelli, L., & Brighenti, F. (2012). Updated bioavailability and 48h excretion profile of flavan-3-ols from green tea in humans. International Journal of Food Sciences and Nutrition, 63(5), 513-521. https://doi.org/10.3109/09637486.2011.640311

    Cañon-Ibarra, A. F., Sanchez, L. T., Rosales Rivera, A., Blach, D., & Villa, C. C. (2023). Curcumin capped magnetic nanoparticles. Synthesis, characterization and photoinactivation activity against S. Aureus. Results in Chemistry, 5, 100908. https://doi.org/10.1016/j.rechem.2023.100908

    Ceccherini, E., Signore, G., Tedeschi, L., Vozzi, F., Di Giorgi, N., Michelucci, E., Cecchettini, A., & Rocchiccioli, S. (2023). Proteomic modulation in TGF-β-treated cholangiocytes Induced by curcumin nanoparticles. International Journal of Molecular Sciences, 24(13), 10481. https://doi.org/10.3390/ijms241310481

    Chacko, S. M., Thambi, P. T., Kuttan, R., & Nishigaki, I. (2010). Beneficial effects of green tea: A literature review. Chinese Medicine, 5, 13. https://doi.org/10.1186/1749-8546-5-13

    Chan, Y.-T., Huang, J., Wong, H.-C., Li, J., & Zhao, D. (2023). Metabolic fate of black raspberry polyphenols in association with gut microbiota of different origins in vitro. Food Chemistry, 404, 134644. https://doi.org/10.1016/j.foodchem.2022.134644

    Chen, Q., Shi, J., Mu, B., Chen, Z., Dai, W., & Lin, Z. (2020). Metabolomics combined with proteomics provides a novel interpretation of the changes in nonvolatile compounds during white tea processing. Food Chemistry, 332, 127412. https://doi.org/10.1016/j.foodchem.2020.127412

    Chen, W., Zhu, X., Lu, Q., Zhang, L., Wang, X., & Liu, R. (2020). C-ring cleavage metabolites of catechin and epicatechin enhanced antioxidant activities through intestinal microbiota. Food Research International, 135, 109271. https://doi.org/10.1016/j.foodres.2020.109271

    Chugh, D., Viswamalya, V. S., & Das, B. (2021). Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process. Journal of Genetic Engineering and Biotechnology, 19(1), 126. https://doi.org/10.1186/s43141-021-00228-w

    Daou, I., Moukrad, N., Zegaoui, O., & Rhazi, F. F. (2018). Antimicrobial activity of ZnO-TiO(2) nanomaterials synthesized from three different precursors of ZnO: Influence of ZnO/TiO(2) weight ratio. Water Science & Technology, 77(5-6), 1238-1249. https://doi.org/10.2166/wst.2017.647

    Dey, P., Chaudhuri, S. R., Efferth, T., & Pal, S. (2021). The intestinal 3M (microbiota, metabolism, metabolome) zeitgeist - from fundamentals to future challenges. Free Radical Biology and Medicine, 176, 265-285. https://doi.org/10.1016/j.freeradbiomed.2021.09.026

    Doumandji, Z., Safar, R., Lovera-Leroux, M., Nahle, S., Cassidy, H., Matallanas, D., Rihn, B., Ferrari, L., & Joubert, O. (2020). Protein and lipid homeostasis altered in rat macrophages after exposure to metallic oxide nanoparticles. Cell Biology and Toxicology, 36(1), 65-82. https://doi.org/10.1007/s10565-019-09484-6

    Enteshari, N. R., Kazemipour, N., Esmaeili, A., Beheshti, S., & Nazifi, S. (2018). Using superparamagnetic iron oxide nanoparticles to enhance bioavailability of quercetin in the intact rat brain. BMC Pharmacology and Toxicology, 19, 59. https://doi.org/10.1186/s40360-018-0249-7

    Galati, G., & O’Brien, P. J. (2004). Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radical Biology and Medicine, 37(3), 287-303. https://doi.org/10.1016/j.freeradbiomed.2004.04.034

    Gao, X., Li, R., Yourick, J. J., & Sprando, R. L. (2022). Transcriptomic and proteomic responses of silver nanoparticles in hepatocyte-like cells derived from human induced pluripotent stem cells. Toxicology in Vitro, 79, 105274. https://doi.org/10.1016/j.tiv.2021.105274

    Garza, D. R., & Dutilh, B. E. (2015). From cultured to uncultured genome sequences: metagenomics and modeling microbial ecosystems. Cellular and Molecular Life Sciences, 72(22), 4287-4308. https://doi.org/10.1007/s00018-015-2004-1

    Hajipour, M. J., Fromm, K. M., Ashkarran, A. A., de Aberasturi, D. J., de Larramendi, I. R., Rojo, T., Serpooshan, V., Parak, W. J., & Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499-511. https://doi.org/10.1016/j.tibtech.2012.06.004

    Han, X. Y., Du, W. L., Fan, C. L., & Xu, Z. R. (2010). ORIGINAL ARTICLE: Changes in composition a metabolism of caecal microbiota in rats fed diets supplemented with copper-loaded chitosan nanoparticles. Journal of Animal Physiology and Animal Nutrition, 94(5), e138-e144. https://doi.org/10.1111/j.1439-0396.2010.00995.x

    Hasan, M., Xue, H., Zafar, A., ul Haq, A., Tariq, T., Ahmad, M. M., Hassan, S. G., Javed, H. U., Chen, X., & Shu, X. (2023). Biochemical surface functionalization of iron oxide for efficient biomarker detector: A new visions of nano-bio interactions. Applied Surface Science Advances, 18, 100486. https://doi.org/10.1016/j.apsadv.2023.100486

    Ilett, E. E., Jørgensen, M., Noguera-Julian, M., Daugaard, G., Murray, D. D., Helleberg, M., Paredes, R., Lundgren, J., Sengeløv, H., & MacPherson, C. (2019). Gut microbiome comparability of fresh-frozen versus stabilized-frozen samples from hospitalized patients using 16S rRNA gene and shotgun metagenomic sequencing. Scientific Reports, 9(1), 13351. https://doi.org/10.1038/s41598-019-49956-7

    Jamwal, K., Bhattacharya, S., & Puri, S. (2018). Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. Journal of Applied Research on Medicinal and Aromatic Plants, 9, 26-38. https://doi.org/10.1016/j.jarmap.2017.12.003

    Karas, D., Ulrichová, J., & Valentová, K. (2017). Galloylation of polyphenols alters their biological activity. Food and Chemical Toxicology, 105, 223-240. https://doi.org/10.1016/j.fct.2017.04.021

    Li, A., Kou, R., Liu, H., Chen, M., Wang, J., Liu, Q., Xing, X., Zhang, B., Dong, L., & Wang, S. (2023). Multi-omics analyses reveal relationships among polyphenol-rich oolong tea consumption, gut microbiota, and metabolic profile: A pilot study. Food Chemistry, 426, 136653. https://doi.org/10.1016/j.foodchem.2023.136653

    Li, F., Jin, H., Xiao, J., Yin, X., Liu, X., Li, D., & Huang, Q. (2018). The simultaneous loading of catechin and quercetin on chitosan-based nanoparticles as effective antioxidant and antibacterial agent. Food Research International, 111, 351-360. https://doi.org/10.1016/j.foodres.2018.05.038

    Li, F., Wang, Y., Li, D., Sun-Waterhouse, D., Chen, Y., & Qiao, X. (2019). Nanoparticle-based encapsulation of green tea polyphenols: An approach to enhance their bioavailability and therapeutic efficacy. In L. Melton, F. Shahidi & P. Varelis (Eds.), Encyclopedia of food chemistry (pp. 695-700). Academic Press. https://doi.org/10.1016/B978-0-08-100596-5.21514-X

    Li, J., Wang, Y., & Suh, J. H. (2022). Multi-omics approach in tea polyphenol research regarding tea plant growth, development and tea processing: Current technologies and perspectives. Food Science and Human Wellness, 11(3), 524-536. https://doi.org/10.1016/j.fshw.2021.12.010

    Li, J., Yang, S., Lei, R., Gu, W., Qin, Y., Ma, S., Chen, K., Chang, Y., Bai, X., Xia, S., Wu, C., & Xing, G. (2018). Oral administration of rutile and anatase TiO(2) nanoparticles shifts mouse gut microbiota structure. Nanoscale, 10(16), 7736-7745. https://doi.org/10.1039/c8nr00386f

    Li, Y., Zhang, X., & Deng, C. (2013). Functionalized magnetic nanoparticles for sample preparation in proteomics and peptidomics analysis [10.1039/C3CS60156K]. Chemical Society Reviews, 42(21), 8517-8539. https://doi.org/10.1039/C3CS60156K

    Li, Z., Jiang, H., Xu, C., & Gu, L. (2015). A review: Using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocolloids, 43, 153-164.

    Liu, Z., Bruins, M. E., Ni, L., & Vincken, J.-P. (2018). Green and black tea phenolics: Bioavailability, transformation by colonic microbiota, and modulation of colonic microbiota. Journal of Agricultural and Food Chemistry, 66(32), 8469-8477. https://doi.org/10.1021/acs.jafc.8b02233

    Low, L. E., Lim, H. P., Ong, Y. S., Siva, S. P., Sia, C. S., Goh, B.-H., Chan, E. S., & Tey, B. T. (2022). Stimuli-controllable iron oxide nanoparticle assemblies: Design, manipulation and bio-applications. Journal of Controlled Release, 345, 231-274. https://doi.org/10.1016/j.jconrel.2022.03.024

    Lu, Q. Y., Yang, Y., Jin, Y. S., Zhang, Z. F., Heber, D., Li, F. P., Dubinett, S. M., Sondej, M. A., Loo, J. A., & Rao, J. Y. (2009). Effects of green tea extract on lung cancer A549 cells: Proteomic identification of proteins associated with cell migration. Proteomics, 9(3), 757-767. https://doi.org/10.1002/pmic.200800019

    Lynch, M. D. J., Bartram, A. K., & Neufeld, J. D. (2012). Targeted recovery of novel phylogenetic diversity from next-generation sequence data. The ISME Journal, 6(11), 2067-2077. https://doi.org/10.1038/ismej.2012.50

    Ma, Y., Zhang, J., Yu, N., Shi, J., Zhang, Y., Chen, Z., & Jia, G. (2023). Effect of nanomaterials on gut microbiota. Toxics, 11(4), 384. https://doi.org/10.3390/toxics11040384

    Matarraz, S., González-González, M., Jara, M., Orfao, A., & Fuentes, M. (2011). New technologies in cancer. Protein microarrays for biomarker discovery. Clinical and Translational Oncology, 13(3), 156-161. https://doi.org/10.1007/s12094-011-0635-8

    Mazzara, S., Sinisi, A., Cardaci, A., Rossi, R. L., Muratori, L., Abrignani, S., & Bombaci, M. (2015). Two of them do it better: Novel serum biomarkers improve autoimmune hepatitis diagnosis. PLOS ONE, 10(9), e0137927. https://doi.org/10.1371/journal.pone.0137927

    Meegahakumbura, M. K., Wambulwa, M. C., Li, M.-M., Thapa, K. K., Sun, Y.-S., Möller, M., Xu, J.-C., Yang, J.-B., Liu, J., Liu, B.-Y., Li, D.-Z., & Gao, L.-M. (2018). Domestication origin and breeding history of the tea plant (Camellia sinensis) in China and India Based on nuclear microsatellites and cpDNA sequence data. Frontiers in Plant Science, 8, 2270. https://doi.org/10.3389/fpls.2017.02270

    Meena, J., Gupta, A., Ahuja, R., Singh, M., Bhaskar, S., & Panda, A. K. (2020). Inorganic nanoparticles for natural product delivery: A review. Environmental Chemistry Letters, 18(6), 2107-2118. https://doi.org/10.1007/s10311-020-01061-2

    Mhatre, S., Srivastava, T., Naik, S., & Patravale, V. (2021). Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. Phytomedicine, 85, 153286. https://doi.org/10.1016/j.phymed.2020.153286

    Mollarasouli, F., Zor, E., Ozcelikay, G., & Ozkan, S. A. (2021). Magnetic nanoparticles in developing electrochemical sensors for pharmaceutical and biomedical applications. Talanta, 226, 122108. https://doi.org/10.1016/j.talanta.2021.122108

    Mujtaba, H., Jat, B. L., & Gani, A. (2023). Effect of green tea polyphenols on the techno-functional and nutraceutical properties of himalayan rice (Mushk Budji). Bioactive Carbohydrates and Dietary Fibre, 29, 100344. https://doi.org/10.1016/j.bcdf.2022.100344

    Nobahari, M., Shahanipour, K., Fatahian, S., & Monajemi, R. (2023). Evaluation of cytotoxic activity of loaded catechin into iron oxide nanoparticles coated with sodium alginate and hydroxyapatite against human HT-29 colon adenocarcinoma and breast cancer MCF-7 cells. Russian Journal of Bioorganic Chemistry, 49(5), 1049-1058. https://doi.org/10.1134/S1068162023050126

    Pan, Z., Xie, R., & Chen, Z. (2023). One-step simultaneous biomass synthesis of iron nanoparticles using tea extracts for the removal of metal(loid)s in acid mine drainage. Chemosphere, 337, 139366. https://doi.org/10.1016/j.chemosphere.2023.139366

    Pasrija, D., & Chinnaswamy, A. (2015). Techniques for extraction of green tea polyphenols: A review. Food and Bioprocess Technology, 8, 935-950. https://doi.org/10.1007/s11947-015-1479-y

    Plachtová, P., Medříková, Z., Zbořil, R., Tuček, J., Varma, R. S., & Maršálek, B. (2018). Iron and iron oxide nanoparticles synthesized with green tea extract: Differences in ecotoxicological profile and ability to degrade malachite green. ACS Sustainable Chemistry and Engineering, 6(7), 8679-8687. https://doi.org/10.1021/acssuschemeng.8b00986

    Saha, S., Ali, M. R., Khaleque, M. A., Bacchu, M. S., Aly Saad Aly, M., & Khan, M. Z. H. (2023). Metal oxide nanocarrier for targeted drug delivery towards the treatment of global infectious diseases: A review. Journal of Drug Delivery Science and Technology, 86, 104728. https://doi.org/10.1016/j.jddst.2023.104728

    Sahraeian, S., Rashidinejad, A., & Golmakani, M.-T. (2024). Recent advances in the conjugation approaches for enhancing the bioavailability of polyphenols. Food Hydrocolloids, 146, 109221. https://doi.org/10.1016/j.foodhyd.2023.109221

    Sankaranarayanan, S. A., Thomas, A., Revi, N., Ramakrishna, B., & Rengan, A. K. (2022). Iron oxide nanoparticles for theranostic applications - Recent advances. Journal of Drug Delivery Science and Technology, 70, 103196. https://doi.org/10.1016/j.jddst.2022.103196

    Shao, C., Chen, L., Lu, C., Shen, C. L., & Gao, W. (2011). A gel-based proteomic analysis of the effects of green tea polyphenols on ovariectomized rats. Nutrition, 27(6), 681-686. https://doi.org/10.1016/j.nut.2010.05.019

    Sharma, A., & Tapadia, K. (2016). Green tea-synthesized magnetic nanoparticles accelerate the microwave digestion of proteins analyzed by MALDI-TOF-MS. Journal of the Iranian Chemical Society, 13(9), 1723-1732. https://doi.org/10.1007/s13738-016-0889-8

    Sidhu, A., Verma, N., & Kaushal, P. (2022). Role of biogenic capping agents in the synthesis of metallic nanoparticles and evaluation of their therapeutic potential. Frontiers in Nanotechnology, 3, 801620. https://doi.org/10.3389/fnano.2021.801620

    Singh, K. K., Senapati, K. K., & Sarma, K. C. (2017). Synthesis of superparamagnetic Fe3O4 nanoparticles coated with green tea polyphenols and their use for removal of dye pollutant from aqueous solution. Journal of Environmental Chemical Engineering, 5(3), 2214-2221. https://doi.org/10.1016/j.jece.2017.04.022

    Singh, R., Akhtar, N., & Haqqi, T. M. (2010). Green tea polyphenol epigallocatechin-3-gallate: Inflammation and arthritis. Life Sciences, 86(25-26), 907-918. https://doi.org/10.1016/j.lfs.2010.04.013

    Sinija, V. R., & Mishra, H. N. (2008). Green tea: Health benefits. Journal of Nutritional and Environmental Medicine, 17(4), 232-242. https://doi.org/10.1080/13590840802518785

    Sohm, B., Immel, F., Bauda, P., & Pagnout, C. (2015). Insight into the primary mode of action of TiO2 nanoparticles on Escherichia coli in the dark. PROTEOMICS, 15(1), 98-113. https://doi.org/10.1002/pmic.201400101

    Spagnoletti, F. N., Kronberg, F., Spedalieri, C., Munarriz, E., & Giacometti, R. (2021). Protein corona on biogenic silver nanoparticles provides higher stability and protects cells from toxicity in comparison to chemical nanoparticles. Journal of Environmental Management, 297, 113434. https://doi.org/10.1016/j.jenvman.2021.113434

    Stalmach, A., Mullen, W., Steiling, H., Williamson, G., Lean, M. E. J., & Crozier, A. (2010). Absorption, metabolism, and excretion of green tea flavan-3-ols in humans with an ileostomy. Molecular Nutrition and Food Research, 54(3), 323-334. https://doi.org/10.1002/mnfr.200900194

    Su, J., Liao, T., Ren, Z., Kuang, Y., Yu, W., Qiao, Q., Jiang, B., Chen, X., Xu, Z., & Li, C. (2023). Polydopamine nanoparticles coated with a metal-polyphenol network for enhanced photothermal/chemodynamic cancer combination therapy. International Journal of Biological Macromolecules, 238, 124088. https://doi.org/10.1016/j.ijbiomac.2023.124088

    Sudhakar, C., Poonkothai, M., Selvankmuar, T., Selvam, K., Rajivgandhi, G., Siddiqi, M. Z., Alharbi, N. S., Kadaikunnan, S., & Vijayakumar, N. (2021). Biomimetic synthesis of iron oxide nanoparticles using Canthium coromandelicum leaf extract and its antibacterial and catalytic degradation of Janus green. Inorganic Chemistry Communications, 133, 108977. https://doi.org/10.1016/j.inoche.2021.108977

    Venkata, K., Chiu, H. F., Cheng, J. C., Chang, Y. H., Lu, Y. Y., Han, Y. C., Shen, Y. C., Tsai, K. S., & Wang, C. K. (2018). Comparative studies on the hypolipidemic, antioxidant and hepatoprotective activities of catechin-enriched green and oolong tea in a double-blind clinical trial. Food and Function, 9(2), 1205-1213. https://doi.org/10.1039/c7fo01449j

    Wen, J.-J., Li, M.-Z., Chen, C.-H., Hong, T., Yang, J.-R., Huang, X.-J., Geng, F., Hu, J.-L., & Nie, S.-P. (2023). Tea polyphenol and epigallocatechin gallate ameliorate hyperlipidemia via regulating liver metabolism and remodeling gut microbiota. Food Chemistry, 404, 134591. https://doi.org/10.1016/j.foodchem.2022.134591

    Williams, K., Milner, J., Boudreau, M. D., Gokulan, K., Cerniglia, C. E., & Khare, S. (2015). Effects of subchronic exposure of silver nanoparticles on intestinal microbiota and gut-associated immune responses in the ileum of Sprague-Dawley rats. Nanotoxicology, 9(3), 279-289. https://doi.org/10.3109/17435390.2014.921346

    Xiao, C., Li, H., Zhao, Y., Zhang, X., & Wang, X. (2020). Green synthesis of iron nanoparticle by tea extract (polyphenols) and its selective removal of cationic dyes. Journal of Environmental Management, 275, 111262. https://doi.org/10.1016/j.jenvman.2020.111262

    Yin, Y., Cui, L., Yan, F., Zhang, Z., Li, W., & Wang, L. (2017). Epigallocatechin gallate based magnetic gold nanoshells nanoplatform for cancer theranostic applications. Journal of Materials Chemistry B, 5(3), 454-463. https://doi.org/10.1039/C6TB02408D

    Yuan, X., Long, Y., Ji, Z., Gao, J., Fu, T., Yan, M., Zhang, L., Su, H., Zhang, W., Wen, X., Pu, Z., Chen, H., Wang, Y., Gu, X., Yan, B., Kaliannan, K., & Shao, Z. (2018). Green tea liquid consumption alters the human intestinal and oral microbiome. Molecular Nutrition and Food Research, 62(12), e1800178. https://doi.org/10.1002/mnfr.201800178

    Zhang, Q., Zhang, J., Zhang, J., Xu, D., Li, Y., Liu, Y., Zhang, X., Zhang, R., Wu, Z., & Weng, P. (2021). Antimicrobial effect of tea polyphenols against foodborne pathogens: A review. Journal of Food Protection, 84(10), 1801-1808. https://doi.org/10.4315/JFP-21-043

    Zhang, S., Xu, M., Sun, X., Shi, H., & Zhu, J. (2022). Green tea extract alters gut microbiota and their metabolism of adults with metabolic syndrome in a host-free human colonic model. Food Research International, 160, 111762. https://doi.org/10.1016/j.foodres.2022.111762

    Zhang, T., Li, D., Zhu, X., Zhang, M., Guo, J., & Chen, J. (2022). Nano-Al2O3 particles affect gut microbiome and resistome in an in vitro simulator of the human colon microbial ecosystem. Journal of Hazardous Materials, 439, 129513. https://doi.org/10.1016/j.jhazmat.2022.129513

    Zhang, Z., Qiu, C., Li, X., McClements, D. J., Jiao, A., Wang, J., & Jin, Z. (2021). Advances in research on interactions between polyphenols and biology-based nano-delivery systems and their applications in improving the bioavailability of polyphenols. Trends in Food Science and Technology, 116, 492-500. https://doi.org/10.1016/j.tifs.2021.08.009

    Zhao, L., Song, X., Ouyang, X., Zhou, J., Li, J., & Deng, D. (2021). Bioinspired virus-like Fe3O4/Au@C nanovector for programmable drug delivery via hierarchical targeting. ACS Applied Materials and Interfaces, 13(42), 49631-49641. https://doi.org/10.1021/acsami.1c11261

    Zhao, T., Chen, Q., Chen, Z., He, T., Zhang, L., Huang, Q., Liu, W., Zeng, X., & Zhang, Y. (2024). Anti-obesity effects of mulberry leaf extracts on female high-fat diet-induced obesity: Modulation of white adipose tissue, gut microbiota, and metabolic markers. Food Research International, 177, 113875. https://doi.org/10.1016/j.foodres.2023.113875

    Zhu, X., Li, H., Zhou, L., Jiang, H., Ji, M., & Chen, J. (2023). Evaluation of the gut microbiome alterations in healthy rats after dietary exposure to different synthetic ZnO nanoparticles. Life Sciences, 312, 121250. https://doi.org/10.1016/j.lfs.2022.121250

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

JTAS-3129-2024

Download Full Article PDF

Share this article

Recent Articles