PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 48 (1) Jan. 2025 / JTAS-3068-2024

 

A Comprehensive Method to Generating and Identifying Transgenic Tobacco Lines with a Single Transgene Integration Locus for Functional Analysis

Mohamad Shafek Hilman, Omar Nawawi, Mohd Farhan Azhari, Tianqi Bai, Cuixian Zhang, Mohd Puad Abdullah, Mat Yunus Abdul Masani and Chong Yu Lok Yusuf

Pertanika Journal of Tropical Agricultural Science, Volume 48, Issue 1, January 2025

DOI: https://doi.org/10.47836/pjtas.48.1.03

Keywords: Agrobacterium, functional analysis, transgene integration locus, transgenic tobacco

Published on: 27 January 2025

Tobacco is a popular model plant used for studying gene function. The generation of transgenic tobacco is tremendously essential in functional genomics. The generated transgenic plants must undergo careful selection and analysis before being used. However, most published protocols for generating transgenic tobacco for functional genomics are not comprehensive and involve sophisticated equipment. This study demonstrates an efficient and comprehensive method for developing and selecting transgenic tobacco lines without involving sophisticated equipment. Transgene was delivered into the genome of a tobacco plant via Agrobacterium tumefaciens. Polymerase Chain Reaction (PCR) was performed to verify the integration of transgenes in the putative primary transformants. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) examined transgene expressions. The number of transgene integration loci (TIL) was determined by transgene segregation analysis. PCR results revealed that ≈97% of the primary transformants were positive. The transgene was highly expressed in the transgenic plants. Segregation analysis showed that 47.6%–66.7% of the transgenic plants contained a single TIL, and the T1 and T2 progenies inherited the transgene. Homozygous transgenic lines with a single TIL were successfully developed by using our method. This manuscript encompasses detailed guidance on genetic transformation, molecular analysis, seed production, and transgene segregation analysis. It serves as a guideline for the researchers to produce transgenic tobacco lines that can be used for functional analysis. The procedures described here can be conducted in standard laboratories as they require no high-end equipment. This comprehensive and efficient method for generating transgenic tobacco will foster functional genomics.

  • Aleem, M., Riaz, A., Raza, Q., Aleem, M., Aslam, M., Kong, K., Atif, R. M., Kashif, M., Bhat, J. A., & Zhao, T. (2022). Genome-wide characterization and functional analysis of class III peroxidase gene family in soybean reveal regulatory roles of GsPOD40 in drought tolerance. Genomics, 114(1), 45-60. https://doi.org/10.1016/j.ygeno.2021.11.016

    Alexander, A., Singh, V. K., & Mishra, A. (2021). Overexpression of differentially expressed AhCytb6 gene during plant-microbe interaction improves tolerance to N2 deficit and salt stress in transgenic tobacco. Scientific Reports, 11(1), 13435. https://doi.org/10.1038/s41598-021-92424-4

    Boyidi, P., Trishla, V. S., Botta, H. K., Yadav, D., & Kirti, P. B. (2021). Heterologous expression of rice annexin OsANN5 potentiates abiotic stress tolerance in transgenic tobacco through ROS amelioration. Plant Stress, 2, 100022. https://doi.org/10.1016/j.stress.2021.100022

    Cano, V., Martinez, M. T., Couselo, J. L., Varas, E., Vieitez, F. J., & Corredoira, E. (2021). Efficient transformation of somatic embryos and regeneration of cork oak plantlets with a gene (CsTL1) encoding a chestnut thaumatin-like protein. International Journal of Molecular Science, 22(4), 1757. https://doi.org/10.3390/ijms22041757

    Dutta, T. K., Vashisth, N., Ray, S., Phani, V., Chinnusamy, V., & Sirohi, A. (2023). Functional analysis of a susceptibility gene (HIPP27) in the Arabidopsis thaliana-Meloidogyne incognita pathosystem by using a genome editing strategy. BMC Plant Biology, 23(1), 390. https://doi.org/10.1186/s12870-023-04401-w

    Duxbury, Z., Wang, S., MacKenzie, C. I., Tenthorey, J. L., Zhang, X., Huh, S. U., Hu, L., Hill, L., Ngou, P. M., Ding, P., Chen, J., Ma, Y., Guo, H., Castel, B., Moschou, P. N., Bernoux, M., Dodds, P. N., Vances, R. E., & Jones, J. D. G. (2020). Induced proximity of a TIR signaling domain on a plant-mammalian NLR chimera activates defense in plants. Proceedings of the National Academy of Sciences of the United States of America, 117(31), 18832-18839. https://doi.org/10.1073/pnas.2001185117

    Fan, Y., Peng, J., Wu, J., Zhou, P., He, R., Allan, A. C., & Zeng, L. (2021). NtbHLH1, a JAF13-like bHLH, interacts with NtMYB6 to enhance proanthocyanidin accumulation in Chinese Narcissus. BMC Plant Biology, 21(1), 275. https://doi.org/10.1186/s12870-021-03050-1

    Fraley, R. T., Rogers, S. G., Horsch, R. B., Sanders, P. R., Flick, J. S., Adams, S. P., Bittner, M. L., Brand, L. A., Fink, C. L., Fry, J. S., Galluppi, G. R., Goldberg, S. B., Hoffmann, N. L., & Woo, S. C. (1983). Expression of bacterial genes in plant cells. Proceedings of the National Academy of Sciences of the United States of America, 80(15), 4803-4807. https://doi.org/10.1073/pnas.80.15.4803

    Gallois, P., & Marinho, P. (1995). Leaf disk transformation using Agrobacterium tumefaciens-expression of heterologous genes in tobacco. In H. Jone (Ed.), Methods in molecular biology (pp. 39-48). Springer Nature. https://doi.org/10.1385/0-89603-321-X:39

    Gebbie, L. (2014). Genomic southern blot analysis. In R. Henry & A. Furtado (Eds.), Cereal genomics: Methods and protocol (pp. 159-177). Humana Press. https://doi.org/10.1007/978-1-62703-715-0_14

    Grzebelus, E., & Skop, L. (2014). Effect of β-lactam antibiotics on plant regeneration in carrot protoplast cultures. In Vitro Cellular & Developmental Biology – Plant, 50(5), 568-575. https://doi.org/10.1007/s11627-014-9626-0

    Guo, X., Fang, D., Sahu, S. K., Yang, S., Guang, X., Folk, R., Smith, S. A., Chanderbali, A. S., Chen, S., Liu, M., Yang, T., Zhang, S., Liu, X., Xu, X., Soltis, P. S., Soltis, D. E., & Liu, H. (2021). Chloranthus genome provides insights into the early diversification of angiosperms. Nature Communications, 12(1), 6930. 10.1038/s41467-021-26922-4

    Haider, S., Gao, Y., & Gao, Y. (2020). Standardized genetic transformation protocol for Chrysanthemum cv. ‘Jinba’ with TERMINAL FLOWER 1 Homolog CmTFL1a. Genes, 11(8), 860. https://doi.org/10.3390/genes11080860

    Hayta, S., Smedley, M. A., Demir, S. U., Blundell, R., Hinchliffe, A., Atkinson, N., & Harwood, W. A. (2019). An efficient and reproducible Agrobacterium-mediated transformation method for hexaploid wheat (Triticum aestivum L.). Plant Methods, 15(1), 121. https://doi.org/10.1186/s13007-019-0503-z

    Henikoff, S. (2000). Heterochromatin function in complex genomes. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1470(1), O1-O8. https://doi.org/10.1016/S0304-419X(99)00034-7

    Hu, L., Lu, J., Chiang, H., Wu, H., Edge, A. S., & Shi, F. (2016). Diphtheria toxin-induced cell death triggers Wnt-dependent hair cell regeneration in neonatal mice. Journal of Neuroscience, 36(36), 9479-9489. https://doi.org/10.1523/JNEUROSCI.2447-15.2016

    Hu, M., Xie, M., Cui, X., Huang, J., Cheng, X., Liu, L., Yan, S., Liu, S., & Tong, C. (2023). Characterization and potential function analysis of the SRS gene family in Brassica napus. Genes, 14(7), 1421. https://doi.org/10.3390/genes14071421

    Hwang, H. H., Yu, M., & Lai, E. M. (2017). Agrobacterium-mediated plant transformation: Biology and applications. The Arabidopsis Book, 2017(15). https://doi.org/10.1199/tab.0186

    Ismagul, A., Yang, N., Maltseva, E., Iskakova, G., Mazonka, I., Skiba, Y., Bi, H., Eliby, S., Jatayev, S., Shavrukov, Y., Borisjuk, N., & Langridge, P. (2018). A biolistic method for high-throughput production of transgenic wheat plants with single gene insertions. BMC Plant Biology, 18(1), 135. https://doi.org/10.1186/s12870-018-1326-1

    Jackson, M. A., Anderson, D. J., & Birch, R. G. (2013). Comparison of Agrobacterium and particle bombardment using whole plasmid or minimal cassette for production of high-expressing, low-copy transgenic plants. Transgenic Research, 22(1), 143-151. https://doi.org/10.1007/s11248-012-9639-6

    Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: Beta‐glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6(13), 3901-3907. https://doi.org/10.1002/j.1460-2075.1987.tb02730.x

    Kim, Y. H., & Huh, G. H. (2019). Overexpression of cinnamyl alcohol dehydrogenase gene from sweetpotato enhances oxidative stress tolerance in transgenic Arabidopsis. In Vitro Cellular & Developmental Biology – Plant, 55(2), 172-179. https://doi.org/10.1007/s11627-018-09951-5

    Kiyak, A., & Mutlu, A. G. (2023). Molecular cloning, characterization and expression profile of FLOWERING LOCUS T (FT) gene from Prunus armeniaca L. South African Journal of Botany, 155, 330-339. https://doi.org/10.1016/j.sajb.2023.02.026

    Kohli, A., Melendi, P. G., Abranches, R., Capell, T., Stoger, E., & Christou, P. (2006). The quest to understand the basis and mechanisms that control expression of introduced transgenes in crop plants. Plant Signaling & Behavior, 1(4), 185-195. https://doi.org/10.4161/psb.1.4.3195

    Kumar, A., Sainger, M., Jaiwal, R., Chaudhary, D., & Jaiwal, P. K. (2021). Tissue culture- and selection-independent Agrobacterium tumefaciens-Mediated transformation of a recalcitrant grain legume, cowpea (Vigna unguiculata L. Walp). Molecular Biotechnology, 63(8), 710-718. https://doi.org/10.1007/s12033-021-00333-8

    Kumar, R., Mamrutha, H. M., Kaur, A., Venkatesh, K., Sharma, D., & Singh, G. P. (2019). Optimization of Agrobacterium-mediated transformation in spring bread wheat using mature and immature embryos. Molecular Biology Reports, 46(2), 1845-1853. https://doi.org/10.1007/s11033-019-04637-6

    Lee, P. Y., Costumbrado, J., Hsu, C. Y., & Kim, Y. H. (2012). Agarose gel electrophoresis for the separation of DNA fragments. Journal of Visualized Experiments, 62, 3829. https://doi.org/10.3791/3923

    Lewis, R. S., Drake-Stowe, K. E., Heim, C., Steede, T., Smith, W., & Dewey, R. E. (2020). Genetic and agronomic analysis of tobacco genotypes exhibiting reduced nicotine accumulation due to induced mutations in Berberine Bridge Like (BBL) Genes. Frontiers in Plant Science, 11, 368. https://doi.org/10.3389/fpls.2020.00368

    Li, B., Xie, C., & Qiu, H. (2009). Production of selectable marker-free transgenic tobacco plants using a non-selection approach: Chimerism or escape, transgene inheritance, and efficiency. Plant Cell Reports, 28(3), 373-386. https://doi.org/10.1007/s00299-008-0640-8

    Li, Q., Wang, W., Wang, W., Zhang, G., Liu, Y., Wang, Y., & Wang, W. (2018). Wheat f-box protein gene TaFBA1 is involved in plant tolerance to heat stress. Frontiers in Plant Science, 9(521), 1242. https://doi.org/10.3389/fpls.2018.00521

    Li, X., Fan, J., Gruber, J., Guan, R., Frentsen, M., & Zhu, L. H. (2013). Efficient selection and evaluation of transgenic lines of Crambe abyssinica. Frontiers in Plant Science, 4, 162. https://doi.org/10.3389/fpls.2013.00162

    Liu, J., Nannas, N. J., Fu, F. f., Shi, J., Aspinwall, B., Parrott, W. A., & Dawe, R. K. (2019). Genome-scale sequence disruption following biolistic transformation in rice and maize. The Plant Cell, 31(2), 368-383. https://doi.org/10.1105/tpc.18.00613

    Liu, Y., Wang, P., Yan, S., Liu, X., Lu, L., Chen, X., Lu, Y., Hao, Z., Shi, J., & Chen, J. (2020). Molecular cloning and functional characterization of the DELLA gene family in Liriodendron hybrids. Forests, 11(12), 1363. https://doi.org/10.3390/f11121363

    Ma, J., Liu, T., & Qiu, D. (2015). Optimization of Agrobacterium-mediated transformation conditions for tomato (Solanum lycopersicum L.). Plant Omics, 8(6), 529-536.

    Maggini, V., Bettini, P., Firenzuoli, F., & Bogani, P. (2021). An efficient method for the genetic transformation of Acmella oleracea L. (Spilanthes acmella Linn.) with Agrobacterium tumefaciens. Plants, 10(2), 198. https://doi.org/10.3390/plants10020198

    Masters, A., Kang, M., McCaw, M., Zobrist, J. D., Gordon Kamm, W., Jones, T., & Wang, K. (2020). Agrobacterium-mediated immature embryo transformation of recalcitrant maize inbred lines using morphogenic genes. Journal of Visualized Experiments, (156), e60782. https://doi.org/10.3791/60782

    Miftahudin, M., Roslim, D. I., Fendiyanto, M. H., Satrio, R. D., Zulkifli, A., Umaiyah, E. I., Chikmawati, T., Sulistyaningsih, Y. C., Suharsono, S., Hartana, A., Nguyen, H. T., & Gustafson, J. P. (2021). OsGERLP: A novel aluminum tolerance rice gene isolated from a local cultivar in Indonesia. Plant Physiology and Biochemistry, 162, 86-99. https://doi.org/10.1016/j.plaphy.2021.02.019

    Miguel, S., Michel, C., Biteau, F., Hehn, A., & Bourgaud, F. (2020). In vitro plant regeneration and Agrobacterium-mediated genetic transformation of a carnivorous plant, Nepenthes mirabilis. Scientific Reports, 10(1), 17482. https://doi.org/10.1038/s41598-020-74108-7

    Miroshnichenko, D., Ashin, D., Pushin, A., & Dolgov, S. (2018). Genetic transformation of einkorn (Triticum monococcum L. ssp. monococcum L.), a diploid cultivated wheat species. BMC Biotechnology, 18(1), 68. https://doi.org/10.1186/s12896-018-0477-3

    Naing, A. H., Xu, J., & Kim, C. K. (2022). Editing of 1-aminocyclopropane-1-carboxylate oxidase genes negatively affects petunia seed germination. Plant Cell Reports, 41(1), 209-220. https://doi.org/10.1007/s00299-021-02802-5

    Nguyen, H. Q., & Bosco, G. (2015). Gene positioning effects on expression in eukaryotes. Annual Review of Genetics, 49, 627-646. https://doi.org/10.1146/annurev-genet-112414-055008

    Niedbala, G., Niazian, M., & Sabbatini, P. (2021). Modeling Agrobacterium-mediated gene transformation of Tobacco (Nicotiana tabacum)-A model plant for gene transformation studies. Frontiers in Plant Science, 12, 695110. https://doi.org/10.3389/fpls.2021.695110

    Pathi, K. M., Tula, S., & Tuteja, N. (2013). High frequency regeneration via direct somatic embryogenesis and efficient Agrobacterium- mediated genetic transformation of tobacco. Plant Signaling & Behavior, 8(6), e24354. https://doi.org/10.4161/psb.24354

    Priya, A. M., Pandian, S. K., & Manikandan, R. (2012). The effect of different antibiotics on the elimination of Agrobacterium and high frequency Agrobacterium-mediated transformation of indica rice (Oryza sativa L.). Czech Journal of Genetics and Plant Breeding, 48, 120-130. https://doi.org/10.17221/77/2011-CJGPB

    Rajeevkumar, S., Anunanthini, P., & Ramalingam, S. (2015). Epigenetic silencing in transgenic plants. Frontiers in Plant Science, 6(693). https://doi.org/10.3389/fpls.2015.00693

    Raldugina, G. N., Hoang, T. Z., Ngoc, H. B., & Karpichev, I. V. (2021). An increased proportion of transgenic plants in the progeny of rapeseed (Brassica napus L.) transformants. Vavilovskii Zhurnal Genetiki i Selektsiis, 25(2), 147-156. https://doi.org/10.18699/VJ21.018

    Robbins, M. D., Bushman, B. S., Huff, D. R., Benson, C. W., Warnke, S. E., Maughan, C. A., Jellen, E. N., Johnson, P. G., & Maughan, P. J. (2023). Chromosome-scale genome assembly and annotation of allotetraploid annual bluegrass (Poa annua L.). Genome Biology and Evolution, 15(1), evac180. https://doi.org/10.1093/gbe/evac180

    Schmidt, F. J., Zimmermann, M. M., Wiedmann, D. R., Lichtenauer, S., Grundmann, L., Muth, J., Twyman, R. M., Prüfer, D., & Noll, G. A. (2020). The major floral promoter NtFT5 in tobacco (Nicotiana tabacum) is a promising target for crop improvement. Frontier in Plant Science, 10, 1666. https://doi.org/10.3389/fpls.2019.01666

    Sharma, R., Liang, Y., Lee, M. Y., Pidatala, V. R., Mortimer, J. C., & Scheller, H. V. (2020). Agrobacterium-mediated transient transformation of sorghum leaves for accelerating functional genomics and genome editing studies. BMC Research Notes, 13(1), 116. https://doi.org/10.1186/s13104-020-04968-9

    Shingote, P. R., Kawar, P. G., Pagariya, M. C., Muley, A. B., & Babu, K. H. (2020). Isolation and functional validation of stress tolerant EaMYB18 gene and its comparative physio-biochemical analysis with transgenic tobacco plants overexpressing SoMYB18 and SsMYB18. 3 Biotech, 10(5), 225. https://doi.org/10.1007/s13205-020-02197-2

    Shokouhifar, F., Bahrabadi, M., Bagheri, A., & Mamarabadi, M. (2019). Transient expression analysis of synthetic promoters containing F and D cis-acting elements in response to Ascochyta rabiei and two plant defense hormones. AMB Express, 9(1), 195. https://doi.org/10.1186/s13568-019-0919-x

    Song, Y., Bai, X., Dong, S., Yang, Y., Dong, H., Wang, N., Zhang, H., & Li, S. (2020). Stable and efficient Agrobacterium-mediated genetic transformation of larch using embryogenic callus. Frontier in Plant Science, 11, 584492. https://doi.org/10.3389/fpls.2020.584492

    Sparkes, I. A., Runions, J., Kearns, A., & Hawes, C. (2006). Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols, 1(4), 2019-2025. https://doi.org/10.1038/nprot.2006.286

    Su, W., Ren, Y., Wang, D., Su, Y., Feng, J., Zhang, C., Tang, H., Xu, L., Muhammad, K., & Que, Y. (2020). The alcohol dehydrogenase gene family in sugarcane and its involvement in cold stress regulation. BMC Genomics, 21(1), 521. https://doi.org/10.1186/s12864-020-06929-9

    Sun, L. J., Zhao, X. Y., Ren, J., Yan, S. P., Zhao, X. Y., & Song, X. S. (2021). Overexpression of Cerasus humilis ChAOX2 improves the tolerance of Arabidopsis to salt stress. 3 Biotech, 11(7), 316. 10.1007/s13205-021-02871-z

    Tang, W., Newton, R. J., & Weidner, D. A. (2007). Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine. Journal of Experimental Botany, 58(3), 545-554. https://doi.org/10.1093/jxb/erl228

    Teixeira da Silva, J. A., & Fukai, S. (2001). The impact of carbenicillin, cefotaxime and vancomycin on chrysanthemum and tobacco TCL morphogenesis and Agrobacterium growth. Journal of Applied Horticulture, 03(01), 3-12. https://doi.org/10.37855/jah.2001.v03i01.01

    Tizaoui, K., & Kchouk, M. E. (2012). Genetic approaches for studying transgene inheritance and genetic recombination in three successive generations of transformed tobacco. Genetic Molecular Biology, 35(3), 640-649. https://doi.org/10.1590/S1415-47572012000400015

    Wang, M., Ren, T., Huang, R., Li, Y., Zhang, C., & Xu, Z. (2021). Overexpression of an Apocynum venetum flavonols synthetase gene confers salinity stress tolerance to transgenic tobacco plants. Plant Physiology and Biochemistry, 162, 667-676. https://doi.org/10.1016/j.plaphy.2021.03.034

    Wang, Z. F., Rouard, M., Droc, G., Heslop-Harrison, P., & Ge, X.-J. (2023). Genome assembly of Musa beccarii shows extensive chromosomal rearrangements and genome expansion during evolution of Musaceae genomes. GigaScience, 12, giad005. https://doi.org/10.1093/gigascience/giad005

    Xie, X., Lin, M., Xiao, G., Wang, Q., & Li, Z. (2024). Identification and characterization of the AREB/ABF gene family in three orchid species and functional analysis of DcaABI5 in Arabidopsis. Plants, 13(6), 774. https://doi.org/10.3390/plants13060774

    Yao, W., Zhang, D., Zhou, B., Wang, J., Li, R., & Jiang, T. (2020). Over-expression of poplar NAC15 gene enhances wood formation in transgenic tobacco. BMC Plant Biology, 20(1), 12. https://doi.org/10.1186/s12870-019-2191-2

    Yin, Z., Plader, W., & Malepszy, S. (2004). Transgene inheritance in plants. Journal of Applied Genetics, 45(2), 127-144.

    Yusuf, C. Y. L., Abdullah, J. O., Shaharuddin, N. A., Abu Seman, I., & Abdullah, M. P. (2018). Characterization of promoter of EgPAL1, a novel PAL gene from the oil palm Elaeis guineensis Jacq. Plant Cell Reports, 37(2), 265-278. https://doi.org/10.1007/s00299-017-2228-7

    Yusuf, C. Y. L., Abu Seman, I., Ab Shukor, N. A., Mohd Nor, M. N., & Abdullah, M. P. (2018). Cloning and analysis of the Eg4CL1 gene and its promoter from oil palm (Elaeis guineensis Jacq.). Sains Malaysiana, 47(8), 1709-1723. https://doi.org/10.17576/jsm-2018-4708-10

    Yusuf, C. Y. L., Nabilah, N. S., Taufik, N., Seman, I. A., & Abdullah, M. P. (2022). Genome-wide analysis of the CAD gene family reveals two bona fide CAD genes in oil palm. 3 Biotech, 12(7), 149. https://doi.org/10.1007/s13205-022-03208-0

    Zhang, Z., Conner, J., Guo, Y., & Ozias-Akins, P. (2020). Haploidy in tobacco induced by PsASGR-BBML transgenes via parthenogenesis. Genes, 11(9), 1072. https://doi.org/10.3390/genes11091072

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JTAS-3068-2024

Download Full Article PDF

Share this article

Related Articles