PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Pre-Press / JTAS-3121-2024

 

Impact of Paenibacillus polymyxa Amendment on Soil Bacterial Communities and Physicochemical Properties in Sandy Soil Restoration

Nur Sazwani Daud, Abd Rahman Jabir Mohd Din, Zaheda Mohamad Azam, Mohd. Nadzreen Hidayat Sarjuni, Mohamad Azzuan Rosli, Hong Yeng Leong and Nor Zalina Othman

Pertanika Journal of Tropical Agricultural Science, Pre-Press

DOI: https://doi.org/10.47836/pjtas.48.2.03

Keywords: Agro-waste, microbial community structure, organic amendment, Paenibacillus polymyxa, sandy soil

Published: 2025-02-17

Soil infertility is a significant challenge in achieving sustainable agricultural practices. In this regard, the chemical fertilizer usage is not an environmentally friendly solution. Organic amendment and bacterial inoculation can positively restore soil quality, enhancing biogeochemical nutrient cycles. In this study, we assessed the effect of adding plant growth-promoting bacteria (PGPB) alongside organic amendments on the physicochemical parameters of sandy-loam soils. Over a 90-day pot experiment, we measured organic matter accumulation, physicochemical, chemical variation trends and changes in microbial community assemblages. Working on the joint application could have a synergistic effect; different agro wastes spent such as mushroom substrate (SMS), empty fruit bunch (EFB) of palm oil and pineapple leaf (PL) residue was amended with Paenibacillus polymyxa ATCC 825 and effective microorganism. Significant changes in soil properties (physicochemical and microbial community) due to the application of P. polymyxa and SMS-amended material were observed after incubation. On average, an increase in water holding capacity, soil pH and mineral content availability was significantly higher than other amended materials. Compared to others, the organic amendment significantly increased sandy-soil aggregation content by 44%. In addition, increased taxonomic diversity in phyla composition was observed with an abundance of Proteobacteria (33%), Firmicutes (18%), Actinobacteria (14%), Bacteriodata (12%), and Verrucomicrobia (6%). The findings indicate that the addition of SMS amendment with bacterial inoculation is beneficial for problematic soil recovery. The incorporation of bacterial inoculation, specifically P. polymyxa ATCC 825, following organic amendment, seems to have a greater positive effect on the soil characteristics

  • Arunrat, N., Kongsurakan, P., Sereenonchai, S., & Hatano, R. (2020). Soil organic carbon in sandy paddy fields of northeast Thailand: A review. Agronomy, 10(8), 1061. https://doi.org/10.3390/agronomy10081061

    Atallah, E., Zeaiter, J., Ahmad, M.N., Leahy, J.J., & Kwapinski, W. (2021). Hydrothermal carbonization of spent mushroom compost waste compared against torrefaction and pyrolysis. Fuel Processing Technology, 216, 106795. https://doi.org/10.1016/j.fuproc.2021.106795

    Barman, U., & Choudhury, R. D. (2020). Soil texture classification using multi class support vector machine. Information Processing in Agriculture, 7(2), 318-332. https://doi.org/10.1016/j.inpa.2019.08.001

    Brischke, C., & Wegener, F.L. (2019). Impact of water holding capacity and moisture content of soil substrates on the moisture content of wood in terrestial microcosms. Forests, 10(6), 485. https://doi.org/10.3390/f10060485

    Carpio, M. J., Andrades, M.S., Herrero-Hernández, E., Marín-Benito, J. M., Sánchez-Martín, M. J., & Rodríguez-Cruz, M. S. (2023). Changes in vineyard soil parameters after repeated application of organic-inorganic amendments based on spent mushroom substrate. Environmental Research, 221, 115339. https://doi.org/10.1016/j.envres.2023.115339

    Castellanos-Navarrete, A., Chocobar, A., Cox, R. A., Fonteyne, S., Govaerts, B., Jespers, N., & Verhulst, N. (2013). Soil aggregate stability by wet sieving: A practical guide for comparing crop management practices. International Maize and Wheat Improvement Center. http://hdl.handle.net/10883/3389

    Dai, H., Chen, Y., Yang, X., Cui, J., & Sui, P. (2017). The effect of different organic materials amendment on soil bacteria communities in barren sandy loam soil. Environmental Science and Pollution Research, 24, 24019-24028. https://doi.org/10.1007/s11356-017-0031-1

    Daud, N. S., Azam, M. Z., & Othman, N. Z. (2023). Optimization of medium compositions and functional characteristics of exopolysaccharide from Paenibacillus polymyxa ATCC 824. Biocatalysis and Agriculture Biotechnology, 49, 102656. https://doi.org/10.1016/j.bcab.2023.102656

    Daud, N. S., Mohd Din, A. R. J., Rosli, M. A., Azam, M. Z., Othman, N. Z., & Sarmidi, M. R. (2019). Paenibacillus polymyxa bioactive compounds for agricultural and biotechnological applications. Biocatalysis and Agriculture Biotechnology, 18, 101092. https://doi.org/10.1016/j.bcab.2019.101092

    Garbowski, T., Bar-Michalczyk, D., Charazińska, S., Grabowska-Polanowska, B., Kowalczyk, A., & Lochyński, P. (2023). An overview of natural soil amendments in agriculture. Soil Tillage Research, 225, 105462. https://doi.org/10.1016/j.still.2022.105462

    Grinev, V. S., Tregubova, K. V., Anis’kov, A. A., Sigida, E. N., Shirokov, A. A., Fedonenko, Y. P., & Yegorenkova, I. V. (2020). Isolation, structure and potential biotechnological applications of the exopolysaccharide from Paenibacillus polymyxa 92. Carbohydrate Polymers, 232, 115780. https://doi.org/10.1016/j.carbpol.2019.115780

    Gűműş, I., & Şeker, C. (2017). Effect of spent mushroom compost application on the physicochemical properties of a degraded soil. Solid Earth, 8(6), 1153-1160. https://doi.org/10.5194/se-8-1153-2017

    Herawati, A., Mujiyo., Syamsiyah, J., Baldan, S.K., & Arifin, I. (2021). Application of soil amendments as a strategy for water holding capacity in sandy soils. In IOP conference series: Earth and environmental science, 724, 012014. https://doi.org/10.1088/1755-1315/724/1/012014

    Huang, R., Lan, M., Liu, J., & Gao, M. (2017). Soil aggregate and organic distribution at dry land soil and paddy soil: The role of different straws returning. Environmental Science and Pollution Research, 24, 27942-27952. https://doi.org/10.1007/s11356-017-0372-9

    Huerta-Pujol, O., Soliva, M., Martínez-Farré, F. X., Valero, J., & López, M. (2010). Bulk density determination as a simple and complementary tool in composting process control. Bioresource Technology, 101(3), 995-1001. https://doi.org/10.1016/j.biortech.2009.08.096

    Kamolmanit, B., Vityakon, P., Kaewpradit, W., Cadisch, G., & Rasche, F. (2013). Soil fungal communities and enzyme activities in a sandy, highly weathered tropical soil treated with biochemically contrasting organic inputs. Biology and Fertility of Soils, 49, 905-917. https://doi.org/10.1007/s00374-013-0785-7

    Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A., & Kuramae, E. E. (2016). The ecology of acidobacteria: Moving beyond genes and genomes. Frontiers in Microbiology, 7, 744. https://doi.org/10.3389/fmicb.2016.00744

    Lacombe-Harvey, M. È, Brzezinski, R. & Beaulieu, C. (2018). Chitinolytic functions in actinobacteria: ecology, enzymes, and evolution. Applied Microbiology and Biotechnology, 102, 7219-7230. https://doi.org/10.1007./s00253-018-9149-4

    Laurent, C., Bravin, M. N., Crouzet, O., Pelosi, C., Tillard, E., Lecomte, P., & Lamy, I. (2020). Increased soil pH and dissolved organic matter after a decade of organic fertilizer application mitigates copper and zinc availability despite contamination. Science of The Total Environment, 709, 135927. https://doi.org/10.1016/j.scitotenv.2019.135927

    Loganathan, L., Yap, S. P., Lau, B. F., & Nagapan, M. (2023). Mechanical, durability, and microstructural properties of mortars containing spent mushroom substrate as partial fine aggregate replacement. Environmental Science and Pollution Research, 30, 69176-69191. https://doi.org/10.1007/s11356-023-27256-y

    Lou, Z., Zhu, J., Wang, Z., Baig, S.A., Fang, Li, Hu, B., & Xu, X. (2015). Release characteristics and control of nitrogen, phosphate, organic matter from spent mushroom compost amended soil in a column experiment. Process Safety and Environmental Protection, 98, 417-423. https://doi.org/10.1016/j.psep.2015.10.003

    Lourenço, K. S., Suleiman, A. K. A., Pijl, A., van Veen, J. A., Cantarella, H., & Kuramae, H. H. (2018). Resilience of the resident soil microbiome to organic and inorganic amendment disturbances and to temporary bacterial invasion. Microbiome, 6, 142. https://doi.org/10.1186/s40168-018-0525-1

    Manickam, T., Cornelissen, G., Bachmann, R. T., Ibrahim, I. Z., Mulder, J., & Hale, S. E. (2015). Biochar application in Malaysian sandy and acid sulfate soils: Soil amelioration effects and improved crop production over two-cropping seasons. Sustainability, 7(12), 16756-16770. https://doi.org/10.3390/su71215842

    Manirakiza, N., Şeker, C., & Negiş, H. (2021). Effects of woody compost and biochar amendments on biochemical properties of the wind erosion afflicted a calcareous and alkaline sandy clay loam soil. Communications in Soil Science and Plant Analysis, 52(5), 487-498. https://doi.org/10.1080/00103624.2020.1862148

    Mengual, C., Schoebitz, M., Azcón, R., & Roldán, A. (2014). Microbial inoculants and organic amendment improves plant establishment and soil rehabilitation under semiarid conditions. Journal of Environmental Management, 134, 1-7. https://doi.org/10.1016/j.jenvman.2014.01.008

    Mohd Din, A. R. J., Rosli, M. A., Azam, M. Z., Othman, N. Z., & Sarmidi, M. R. (2020). Paenibacillus polymyxa role involved in phosphate solublization and growth promotion of Zea mays under abiotic stress condition. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 90, 63-71. https://doi.org/10.1007/s40011-019-01081-1

    Monreal, C.M., Zhang, J., Koziel, S., Vidmar, J., Gonzalez, M., Matus, F., Baxi, S., Wu, S., DeRosa, M., & Etcheverria, P. (2017). Bacterial community structure associated with the addition of nitrogen and the dynamics of soluble carbon in the rhizosphere of canola (Brassica napus) grown in a Podzol. Rhizosphere, 5, 16-25. https://doi.org/10.1016/j.rhisph.2017.11.004

    Othman, N. Z., Mohd Din, A. R. J., Azam, Z., Rosli, M. A., & Sarmidi, M. R. (2018). Statistical optimization of medium compositions for high cell mass and exopolysaccharide production by Lactobacillus plantarum ATCC 8014. Applied Food Biotechnology, 5(2), 87-96. https://doi.org/10.22037/afb.v5i2.19299

    Paula, F. S., Tatti, E., Abram, F., Wilson, J., & O’Flaherty, V. (2017). Stabilisation of spent mushroom susbtrate for application as a plant growth-promoting organic amendment. Journal of Environmental Management, 196, 476-486. https://doi.org/10.1016/j.jenvman.2017.03.038

    Putasso, A., Vityakon, P., Saenjan, P., Trelo-Ges, V., & Cadisch, G. (2011). Relationship between residue quality, decomposition patterns, and soil organic matter accumulation in a tropical sandy soil after 13 years. Nutrient Cycling in Agroecosystems, 89, 159-174. https://doi.org/10.1007/s10705-010-9385-1

    Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., & Glőckner, F.O. (2012). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acid Research, 41(D1), D590-D596. https://doi.org/10.1093/nar/gks1219

    Sahin, U., Eroglu, S., & Sahin, F. (2011). Microbial application with gypsum increases the saturated hydraulic conductivity of saline-sodic soils. Applied Soil Ecology, 48(2), 247-250. https://doi.org/10.1016/j.apsoil.2011.04.001

    Schmid, C. A. O., Schröder, P., Armbruster, M., & Schloter, M. (2017). Organic amendments in a long-term field trail-consequences for the bulk soil bacterial community as revealed by network analysis. Microbial Ecology, 76, 226-239. https://doi.org/10.1007/s00248-017-1110-z

    Singh, K., Mishra, A. K., Singh, B., Singh, R. P., & Patra, D. D. (2016). Tillage effects on crop yield and physicochemical properties of sodic soils. Land Degradation & Development, 27(2), 223-233. https://doi.org/10.1002/ldr.2266

    Suleiman, A. K. A., Harkes, P., van den Elsen, S., Holterman, M., Korthals, G. W., Helder, J., & Kuramae, E. K. (2019). Organic amendment strengthens interkingdom associations in the soil and rhizosphere of barley (Hordeum vulgare). Science of The Total Environment, 695, 133885. https://doi.org/10.1016/j.scitotenv.2019.133885

    Tang, Z. S., An, H., & Shangguan, Z. P. (2015). The impact of desertification on carbon and nitrogen storage in the desert steppe ecosystem. Ecological Engineering, 84, 92-99. https://doi.org/10.1016/j.ecoleng.2015.07.023

    Trivedi, P., Singh, K., Pankaj, U., Verma, S. K., Verma, R. K., & Patra, D. D. (2017). Effect of organic amendments and microbial application on sodic soil properties and growth of an aromatic crop. Ecological Engineering, 102, 127-136. https://doi.org/10.1016/j.ecoleng.2017.01.046

    Verchot, L.V., Dutaur, L., Shepherd, K. D., & Albrecht, A. (2011). Organic matter stabilization in soil aggregates: Understanding the biogeochemical mechanisms that determine the fate of carbon inputs in soils. Geoderma, 161(3-4), 182-193. https://doi.org/10.1016/j.geoderma.2010.12.017

    Villa, Y. B., Khalsa, S. D. S., Ryals, R., Duncan, R. A., Brown, P. H., & Hart, S. C. (2021). Organic matter amendments improve soil fertility in almond orchards of contrasting soil texture. Nutrient Cycling in Agroecosystems, 120, 343-361. https://doi.org/10.1007/s10705-021-10154-5

    Vityakon, P. (2007). Degradation and restoration of sandy soils under different agricultural land uses in northeast Thailand: A review. Land Degradation & Development, 18(5), 567-577. https://doi.org/10.1002/ldr.798

    Wang, X., Bian, Q., Jiang, Y., Zhu, L., Chen, Y., Liang, Y., & Sun, B. (2021). Organic amendments drive shifts in microbial community structure and keystone taxa which increase C mineralization across aggregate size classes. Soil Biology and Biochemistry, 153, 108062. https://doi.org/10.1016/j.soilbio.2020.108062

    Wang, Z. G., Hu, Y. L., Xu, W. H., Liu, S., Hu, Y., & Zhang, Y. (2015). Impacts of dimethyl phthalate on the bacterial community and functions in black soils. Frontiers in Microbiology, 6, 405. https://doi.org/10.3389/fmicb.2015.00405

    Wu, N., Pan, H. X., Qiu, D., & Zhang, Y. M. (2014). Feasibility of EPS-producing bacterial inoculation to speed up the sand aggregation in the Gurbantunggut Desert, Northwestern China. Journal of Basic Microbiology, 54(12), 1378-1386. https://doi.org/10.1002/jobm.201400355

    Xue, B., Huang, L., Li, X., Lu, J., Gao, R., & Kamran, M. (2022). Straw residue incorporation and potassium fertilization enhances soil aggregate stability by altering soil content of iron oxide and organic carbon in a rice-rape cropping system. Land Degradation & Development, 33(14), 2567-2584. https://doi.org/10.1002/ldr.4333

    Yegorenkova, I. V., Tregubova, K. V., & Ignatov, V. V. (2013). Paenibacillus polymyxa rhizobacteria and their synthesized exoglucans in interaction with wheat roots: Colonization and root hair deformation. Current Microbiology, 66, 481-486. https://doi.org/10.1007/s00284-012-0297-y

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

JTAS-3121-2024

Download Full Article PDF

Share this article

Recent Articles