e-ISSN 2231-8542
ISSN 1511-3701
Fazle Khuda, Badiah Baharin, Nur Najmi Mohamad Anuar, Putri Ayu Jayusman, Mariati Abdul Rahman and Nurrul Shaqinah Nasruddin
Pertanika Journal of Tropical Agricultural Science, Volume 48, Issue 1, January 2025
DOI: https://doi.org/10.47836/pjtas.48.1.09
Keywords: Collagenase, matrix metalloproteinase, MMP-1, MMP-8, MMP-13, periodontitis
Published on: 27 January 2025
Collagenase (MMP-1, -8, and -13) is one of the groups of the matrix metalloproteinases (MMPs) that is responsible for the breakdown of collagen, particularly type-I collagen, which is found in profusion in the extracellular matrix (ECM). It is essential to understand the role of a group of biomarkers in the progression of periodontal disease. This study aims to evaluate the expression of MMP-1, -8, and -13 combined in the periodontitis progression induced by wire ligation and Enterococcus faecalis inoculation using the rat model. Twelve rats were allocated uniformly between the control group 0-day, experimental group 7- and 14-days. Orthodontic wire (0.2 mm) was placed between the proximal space of the right upper first and second molar tooth area and 0.5 μl of 1.5 ´ 108 cfu/ml. Rats in the experimental groups received an injection of E. faecalis suspension into their gingival sulcus. After the respective induction time, the rats were euthanised. Gingival tissue and maxillary jaw samples were obtained from all rats for quantitative real-time PCR and histological examination. The results showed a significant increase in mRNA expression within the tissue samples from the gingiva of MMP-1 (p < 0.05), -8 (p < 0.01), and -13 (p < 0.01) in 7 days as compared to the control. The MMP-8 expression levels were also significantly reduced (p < 0.05). Histological analysis showed a higher inflammatory cell infiltration and the presence of osteoclast in the 7 days, which was reduced in the 14 days. MMP-1, -8, and -13 levels were positively correlated with the presence of inflammatory cells. Therefore, identifying a group of collagenases might be a useful biomarker to detect the progression of periodontitis.
Alghamdi, F., & Shakir, M. (2020). The influence of Enterococcus Faecalis as a dental root canal pathogen on endodontic treatment: A systematic review. Cureus, 12(3), e7257. https://doi.org/10.7759/cureus.7257
Beck, J., Philips, K., Moss, K., Sen, S., Morelli, T., Preisser, J., & Pankow, J. (2020). Periodontal disease classifications and incident coronary heart disease in the Atherosclerosis Risk in Communities study. Journal of Periodontology, 91(11), 1409–1418. https://doi.org/10.1002/JPER.19-0723
Checchi, V., Maravic, T., Bellini, P., Generali, L., Consolo, U., Breschi, L., & Mazzoni, A. (2020). The role of matrix metalloproteinases in periodontal disease. International Journal of Environmental Research and Public Health, 17(14), 4923. https://doi.org/10.3390/ijerph17144923
Chidambar, C. K., Shankar, S. M., Raghu, P., Gururaj, S. B., Bushan, K. S. (2019). Detection of Enterococcus faecalis in subgingival biofilm of healthy, gingivitis and chronic periodontitis subjects. Journal of Indian Scociety of Periodontology, 23(5), 416-418. https://doi.org/10.4103/jisp.jisp_44_19
Choubaya, C., Chahine, R., Zalloua, P., & Salameh, Z. (2019). Periodontitis and diabetes interrelationships in rats: Biochemical and histopathological variables. Journal of Diabetes and Metabolic Disorders, 18, 163-172. https://doi.org/10.1007/s40200-019-00403-4
Davis, J. A. (2001). Mouse and rat anesthesia and analgesia. Current Protocols in Neuroscience, 5(1), A.4B.1-A.4B.7. https://doi.org/10.1002/0471142301.nsa04bs15
de Molon, R. S., de Avila, E. D., Nogueira A. V. B, de Souza, J. A. C., Avila-Campos, M. J., de Andrade, C. R., & Cirelli, J. A. (2014). Evaluation of the host response in various models of induced periodontal disease in mice. Journal of Periodontology, 85(3), 465–477. https://doi.org/10.1902/jop.2013.130225
de Molon, R. S., Mascarenhas, V. I., de Avila, E. D., Finoti, L. S., Toffoli, G. B., Spolidorio, D. M. P., Scarel-Caminaga, R. M., Tetradis, S., & Cirelli, J. A. (2016). Long-term evaluation of oral gavage with periodontopathogens or ligature induction of experimental periodontal disease in mice. Clinical Oral Investigations, 20, 1203–1216. https://doi.org/10.1007/s00784-015-1607-0
de Souza, J. A. C., Nogueira, A. V. B., de Souza, P. P. C., Cirelli, J. A., Garlet, G. P., & Rossa Jr., C. (2011). Expression of suppressor of cytokine signaling 1 and 3 in ligature-induced periodontitis in rats. Archive of Oral Biology, 56(10), 1120–1128. https://doi.org/10.1016/j.archoralbio.2011.03.022
Dom, T. N. M., Ayob, R., Muttalib, K. A., & Aljunid, S. M. (2016). National economic burden associated with management of periodontitis in Malaysia. International Journal of Dentistry, 2016, 1891074. https://doi.org/10.1155/2016/1891074
du Sert, N. P., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., … Würbel, H. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. BMC Veterinary Research, 16, 242. https://doi.org/10.1186/s12917-020-02451-y
Hajishengallis, G., & Chavakis, T. (2021). Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nature Reviews Immunology, 21, 426–440. https://doi.org/10.1038/s41577-020-00488-6
Hirate, Y., Yamaguchi, M., & Kasai, K. (2012). Effects of relaxin on relapse and periodontal tissue remodeling after experimental tooth movement in rats. Connective Tissue Research, 53(3), 207–219. https://doi.org/10.3109/03008207.2011.628060
Ilyas, M. N., Adzim, M. K. R., Simbak, N. B., & Atif, A. B. (2017). Sample size calculation for animal studies using degree of freedom (E); An easy and statistically defined approach for metabolomics and genetic research. Current Trends in Biomedical Engineering and Biosciences, 10(2), 555785. https://doi.org/10.19080/ctbeb.2017.10.555785
Jacob, S. (2012). Global prevalence of periodontitis: A literarure review. International Arab Journal of Dentistry, 3(1), 6.
Khuda, F., Anuar, N. N. M., Baharin, B., & Nasruddin, N. S. (2021). A mini review on the associations of matrix metalloproteinases (MMPs) -1, -8, -13 with periodontal disease. AIMS Molecular Science, 8(1), 13–31. https://doi.org/10.3934/molsci.2021002
Kraft-Neumärker, M., Lorenz, K., Koch, R., Hoffmann, T., Mäntylä, P., Sorsa, T., & Netuschil L. (2012). Full-mouth profile of active MMP-8 in periodontitis patients. Journal of Periodontal Research, 47(1), 121–128. https://doi.org/10.1111/j.1600-0765.2011.01416.x
Kuo, P.-J., Fu, E., Lin, C.-Y., Ku, C.-T., Chiang, C.-Y., Fu, M. M., Fu, M.-W., Tu, H.-P., & Chiu, H.-C. (2019). Ameliorative effect of hesperidin on ligation-induced periodontitis in rats. Journal of Periodontology, 90(3), 271–280. https://doi.org/10.1002/JPER.16-0708
Li, D., Feng, Y., Tang, H., Huang, L., Tong, Z., Hu, C., Chen, X., & Tan, J. (2020). A simplified and effective method for generation of experimental murine periodontitis model. Frontiers in Bioengineering and Biotechnology, 8, 444. https://doi.org/10.3389/fbioe.2020.00444
Liu, D. (Ed.) (2011). Molecular detection of human bacterial pathogens (1st ed.). CRC Press. https://doi.org/10.1201/b10848
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
Matsui, H., Yamasaki, M., Nakata, K., Amano, K., & Nakamura, H. (2011). Expression of MMP-8 and MMP-13 in the development of periradicular lesions. International Endodontic Journal, 44(8), 739–745. https://doi.org/10.1111/j.1365-2591.2011.01880.x
Pirhan, D., Atilla, G., Emingil, G., Sorsa, T., Tervahartiala, T., & Berdeli, A. (2008). Effect of MMP-1 promoter polymorphisms on GCF MMP-1 levels and outcome of periodontal therapy in patients with severe chronic periodontitis. Journal of Clinical Periodontology, 35(10), 862–870. https://doi.org/10.1111/j.1600-051x.2008.01302.x
Preethanath, R. S, Ibraheem, W. I, & Anil, A. (2020). Pathogenesis of gingivitis. In G. Sridharan, A. Sukumaran, & A. E. O. Al Ostwani (Eds.), Oral diseases. IntechOpen. https://doi.org/10.5772/intechopen.91614
Ramadan, D. E., Hariyani, N., Indrawati, R., Ridwan, R. D., & Diyatri, I. (2020). Cytokines and chemokines in periodontitis. European Journal of Dentistry, 14(3), 483–495. https://doi.org/10.1055/s-0040-1712718
Rathnayake, N., Gieselmann, D.-R., Heikkinen, A. M., Tervahartiala, T., & Sorsa, T. (2017). Salivary diagnostics — Point-of-care diagnostics of MMP-8 in dentistry and medicine. Diagnostics, 7(1), 7. https://doi.org/10.3390/diagnostics7010007
Souto, R., de Andrade, A. F. B., Uzeda, M., & Colombo, A. P. V. (2006). Prevalence of “non-oral” pathogenic bacteria in subgingival biofilm of subjects with chronic periodontitis. Brazilian Journal of Microbiology, 37, 208–215. https://doi.org/10.1590/S1517-83822006000300002
Yang, D., Wang, J., Ni, J., Shang, S., Liu, L., Xiang, J., & Li, C. (2013). Temporal expression of metalloproteinase-8 and -13 and their relationships with extracellular matrix metalloproteinase inducer in the development of ligature-induced periodontitis in rats. Journal of Periodontal Research, 48(4), 411-419. https://doi.org/10.1111/jre.12019
ISSN 1511-3701
e-ISSN 2231-8542