PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Pre-Press / JTAS-3034-2024

 

Pigeon Pea (Cajanus cajan) Leaf Flavonoid Production at Different Cow Manure Rate Application and Pruning Height

Sandra Arifin Aziz, Tutik Wresdiyati, Siti Sa’diah, Made Astawan, Hamzah Alfarisi, Taopik Ridwan and Made Darawati

Pertanika Journal of Tropical Agricultural Science, Pre-Press

DOI: https://doi.org/10.47836/pjtas.48.2.07

Keywords: Manure reapplication, medicinal plant, recurrent harvesting, quercetin

Published: 2025-02-17

Pigeon pea (Cajanus cajan) seeds are widely consumed as a staple food in numerous countries, with leaves recognized for various medicinal values, particularly in flavonoid production. Therefore, this study aimed to investigate leaf flavonoid production in pigeon peas through recurrent harvesting at different heights and the application of cow manure rate. The experiment was carried out in a Split Plot Design, with the main plot consisting of three levels of cow manure at 0, 15, and 30 tons/ha, while the subplots comprised no pruning, 100 and 125 cm above the ground. The findings indicated no observed interaction between cow manure and pruning concerning the variables studied. Recurrent harvesting with 30 tons of cow manure/ha produced a total leaf flavonoid of 2228.3 mg quercetin equivalent (QUE)/100 g leaf dry weight. It showed that 30 tons of cow manure/ha needed to be reapplied for three consecutive harvests since the value declined from the second to the third harvesting. Pruning at different heights above ground produced no significant differences in total leaf flavonoid per plant, with a range of 841.10–1,539.00 mg QUE/100 g leaf dry weight.

  • Abebe, B. K. (2022). The dietary use of pigeon peas for human and animal diets. The Scientific World Journal, 2022(1), 4873008. https://doi.org/10.1155/2022/4873008

    Abidinsyah, D. A., Jusoh, S., Suyub, I. B., & Yaakub, H. (2020). Growth and yield of Cajanus cajan forage at different cutting intervals of regrowth defoliation. In IOP Conference Series: Earth and Environmental Science (p. 012029). IOP Publishing. https://doi.org/10.1088/1755-1315/465/1/012029

    Adhi, I. M. P., Kusumawati, N. N. C., & Witariadi, N. M. (2017). Pertumbuhan dan hasil tanaman kelor (Moringa oleifera Lam.) pada jenis tanah dengan dosis pupuk TSP dan urea berbeda [Growth and yield of moringa (Moringa oleifera Lam.) plants on soil types with different TSP and urea fertilizer doses]. E-Jurnal FAPET UNUD, 5(1), 181–188.

    Ahmed, U., Lin, J. C., Srivastava, G., & Djenouri, Y. (2021). Original papers A nutrient recommendation system for soil fertilization based on evolutionary computation. Computers and Electronics in Agriculture, 189, 106407. https://doi.org/10.1016/j.compag.2021.106407

    Aja, P. M., Alum, E. U., Ezeani, N. N., Nwali, B. U., & Edwin, N. (2015). Comparative phytochemical composition of Cajanus cajan leaf and seed. International Journal of Microbiology Research, 6(1), 42–46. https://doi.org/10.5829/idosi.ijmr.2015.6.1.93132

    Aja, P., Igwenyi, I., Okechukwu, U. P., Orji, O., & Alum, E. (2015). Evaluation of anti-diabetic effect and liver function indices of ethanol extracts of Moringa oleifera and Cajanus cajan leaves in alloxan-induced diabetic albino rats the effect of ethanol leaf extract of Jatropha curcas on chloroform induced hepatotoxicity. Global Veterinaria, 3, 439–447.

    Al-Masri, A. A., Ameen, F., Davella, R., & Mamidala, E. (2023). Antidiabetic effect of flavonoid from Rumex vesicarius on alloxan-induced diabetes in Male Albino Wistar rats and its validation through in silico molecular docking and dynamic simulation studies. Biotechnology and Genetic Engineering Reviews, 40(4), 1-16. https://doi.org/10.1080/02648725.2023.2213042

    Bhattacharya, R. D., Parmar, K. M., Itankar, P. R., & Prasad, S. K. (2017). Phytochemical and pharmacological evaluation of organic and non-organic cultivated nutritional Centella asiatica collected after different time intervals of harvesting. South African Journal of Botany, 112, 237–245. https://doi.org/10.1016/j.sajb.2017.06.003

    Bode, O. O., Noah, F. A., & Jacob, O. O. (2018). Effects of spacing, cutting height, and cutting interval on fodder yield and nutritional value of Cajanus Cajan. International Journal of Environment, Agriculture and Biotechnology, 3(3), 818–822. https://doi.org/10.22161/ijeab/3.3.14

    Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of food and drug analysis, 10(3), 3. https://doi.org/10.38212/2224-6614.2748

    Dambreville, A., Lauri, P.-E., Normand, F., & Guedon, Y. (2015). Analyzing growth and development of plants jointly using developmental growth stages. Annals of Botany, 115, 93–105. https://doi.org/10.1093/aob/mcu227

    Dias, M. C., Pinto, D. C. G. A., & Silva, A. M. S. (2021). Plant flavonoids: Chemical characteristics and biological activity. Molecules, 26(17), 1–16. https://doi.org/10.3390/molecules26175377

    Ebrahimi, P., Shokramraji, Z., Tavakkoli, S., Mihaylova, D., & Lante, A. (2023). Chlorophylls as natural bioactive compounds existing in food by-products: A critical review. Plants, 12(7), 1533. https://doi.org/10.3390/plants12071533

    El-Seifi, S., Hassan, M., & Al-Saeed, A. (2013). The effect of organic, mineral, and bio-fertilization on growth, yield, and chemical composition of pigeon pea (Cajanus cajan) under Ismailia region conditions. Journal of Plant Production, 4(4), 693–703. https://doi.org/10.21608/jpp.2013.73015

    Fossou, R. K., Ziegler, D., Zézé, A., Barja, F., & Perret, X. (2016). Two major clades of Bradyrhizobia dominate symbiotic interactions with pigeon pea in fields of côte d’Ivoire. Frontiers in Microbiology, 7, 1–11. https://doi.org/10.3389/fmicb.2016.01793

    Fuller, D. Q., Murphy, C., Kingwell-Banham, E., Castillo, C. C., & Naik, S. (2019). Cajanus cajan (L.) Millsp. origins and domestication: The South and Southeast Asian archaeobotanical evidence. Genetic Resources and Crop Evolution, 66(6), 1175–1188. https://doi.org/10.1007/s10722-019-00774-w

    Gargi, B., Semwal, P., Jameel Pasha, S. B., Singh, P., Painuli, S., Thapliyal, A., & Cruz-Martins, N. (2022). Revisiting the nutritional, chemical, and biological potential of Cajanus cajan (L.) Millsp. Molecules, 27(20), 1–20. https://doi.org/10.3390/molecules27206877

    Goldan, E., Nedeff, V., Barsan, N., Culea, M., Panainte-lehadus, M., Mosnegutu, E., Tomozei, C., Chitimus, D., & Irimia, O. (2023). Assessment of manure compost used as soil amendment — A review. Processes, 11(1167), 1–16. https://doi.org/10.3390/pr11041167

    Hatibie, S., & Garantjang, S. (2022). The effect of manure combination and liquid organic fertilizer (LOF) on livestock-integrated maize farming production (Zea Mays L). Hasanuddin Journal of Animal Science, 4(1), 20–29. https://doi.org/10.20956/hajas.v4ij.20594

    Isobe, C., Kajihara, S., Tanaka, Y., Yasuba, K. I., Yoshida, Y., Inamoto, K., Ishioka, G., Doi, M., & Goto, T. (2020). Effects of harvest shoot stage on the partitioning of photosynthates originating from bent shoots in the modified arching technique of cut rose production. Horticulture Journal, 89(3), 278–283. https://doi.org/10.2503/hortj.UTD-116

    Kayoumu, M., Iqbal, A., Muhammad, N., Li, X., Li, L., Wang, X., Gui, H., Qi, Q., Ruan, S., Guo, R., Zhang, X., Song, M., & Dong, Q. (2023). Phosphorus availability affects the photosynthesis and antioxidant system of contrasting low-p-tolerant cotton genotypes. Antioxidants, 12(2), 466. https://doi.org/10.3390/antiox12020466

    Khan, F., Siddique, A. B., Shabala, S., Zhou, M., & Zhao, C. (2023). Phosphorus plays key roles in regulating plants’ physiological responses to abiotic stresses. Plants, 12(15). https://doi.org/10.3390/plants12152861

    Mago, O. Y. T., & Bunga, Y. N. (2020). Effect of cow dung as organic manure on the productivity of Cajanus cajan (L.) Millsp (Pigeon pea). Mangifera Edu, 5(1), 8–17. https://doi.org/10.31943/mangiferaedu.v5i1.91

    McLaughlin, S. P. (2003). Removing flower stalks increases leaf biomass production in Hesperaloe funifera (Agavaceae). Journal of Arid Environments, 55(1), 143-149. https://doi.org/10.1016/S0140-1963(02)00256-2.

    Mekonen, T., Mekasha, A., Tolera, A., Nurfeta, A., & Bradford, B. (2022). Location and plant spacing affect biomass yield and nutritional value of pigeon pea forage. Agronomy Journal, 114(1), 228–247. https://doi.org/10.1002/agj2.20803

    Mukindia, C. (1992). Response of pigeon pea (Cajanus cajan (L.) Millsp) to phosphate and nitrogen fertilizers and animal manure [Master’s thesis, University of Nairobi]. UoN Digital Repository. http://erepository.uonbi.ac.ke/bitstream/handle/11295/18822/Mukindia_Response of pigeon pea Cajanus cajan L. Mills to phosphate and nitrogen and animal manure. pdf?sequence=3&isAllowed=y

    Musokwa, M., & Mafongoya, P. (2021). Pigeonpea yield and water use efficiency: A savior under climate change-induced water stress. Agronomy, 11(5), 1–14. https://doi.org/10.3390/agronomy11010005

    Oke, D. G. (2014). Proximate and phytochemical analysis of Cajanus Cajan (Pigeon Pea) Leaves. Chemical Science Transactions, 3(3), 1172–1178. https://doi.org/10.7598/cst2014.785

    Pal, D., Mishra, P., Sachan, N., & Ghosh, A. (2011). Biological activities and medicinal properties of Cajanus cajan (L) Millsp. Journal of Advanced Pharmaceutical Technology and Research, 2(4), 207–214. https://doi.org/10.4103/2231-4040.90874

    Prado, J., Ribeiro, H., Alvarenga, P., & Fangueiro, D. (2022). A step towards the production of manure-based fertilizers: Disclosing the effects of animal species and slurry treatment on their nutrient content and availability. Journal of Cleaner Production, 337, 130369. https://doi.org/10.1016/j.jclepro.2022.130369

    Ranganathan, R., Chauhan, Y. S., & Flower, D. J. (2001). Predicting growth and development of pigeon pea: Leaf area development. Field Crops Research, 69(2), 163–172. https://doi.org/10.1016/S0378-4290(00)00137-4

    Saleh, I., Aziz, S. A., & Andarwulan, N. (2014). Shoot production and metabolite content of waterleaf with organic fertilizer. Jurnal Agronomi Indonesia, 42(3), 7683.

    Saputra, A. H. C., Kartini, L., & Yuliartini, M. S. (2019). Response of cow manure dosage and KCl fertilizer on growth and yield of young fruit of Okra (Abelmoschus esculentus L) plants. Sustainable Environment Agricultural Science, 3(1), 13–18.

    Souza, H. A. De, Vieira, P. F. de D., Rozane, E. M. J., Sagrilo, E., Leite, L. F. C., & Ferreira, A. C. M. (2020). Critical levels and sufficiency ranges for leaf nutrient diagnosis by two methods in soybean grown in the Northeast of Brazil. Revista Brasileira de Ciência Do Solo, 44(e0190125), 1–14. https://doi.org/10.36783/18069657rbcs20190125

    Suminar, R., Suwarto, & Purnamawati, H. (2017). Sorghum growth and yield in Latosol soil with different levels of nitrogen and phosphorus applications. Journal of Agronomy Indonesia, 45(3), 271–277. https://doi.org/10.24831/jai.v45i3.14515

    Tenakwa, E. A., Imoro, A. Z., Ansah, T., & Kizito, F. (2022). Pigeon pea (Cajanus cajan) fodder cutting management in the Guinea savanna agro-ecological zone of Ghana. Agroforestry Systems, 96(1), 1–10. https://doi.org/10.1007/s10457-021-00679-7

    Tjhia, B., Aziz, S. A., & Suketi, K. (2018). Correlations between leaf nitrogen, phosphorus, and potassium and leaf chlorophyll, anthocyanins, and carotenoids content at vegetative and generative stage of bitter leaf (Vernonia amygdalina Del.). Journal of Tropical Crop Science, 5(1), 25–33. https://doi.org/10.29244/jtcs.5.1.25-33

    Ullah, A., Munir, S., Badshah, S. L., Khan, N., Ghani, L., Poulson, B. G., Emwas, A., & Jaremko, M. (2020). Therapeutic Agent. Molecules, 25(5243), 1–39. https://doi.org/10.3390/molecules25225243

    Vongsak, B., Sithisarn, P., & Mangmool, S. (2013). Maximizing total phenolics, total flavonoid contents, and antioxidant activity of Moringa oleifera Leaf extract by the appropriate extraction method. Industrial Crops & Products, 44, 566–571. https://doi.org/10.1016/j.indcrop.2012.09.021

    Wresdiyati, T., Sa’diah, S., Astawan, M., Alfarisi, H., Aziz, S. A., Darawati, M., & Subangkit, M. (2023). The repeated dose 28-day oral toxicity study of combined extract of Cajanus cajan leaf and Zingiber officinale rhizome in male and female Sprague-Dawley rats. Tropical Journal of Natural Product Research, 7(8), 3706–3716. https://doi.org/10.26538/tjnpr/v7i8.21

    Yin, Z., Guo, W., Xiao, H., Liang, J., Hao, X., Dong, N., Leng, T., Wang, Y., Wang, Q., & Yin, F. (2018). Nitrogen, phosphorus, and potassium fertilization to achieve expected yield and improve yield components of mung bean. PLoS ONE, 13(10), 1–17. https://doi.org/10.1371/journal.pone.0206285

    Yuniastuti, E., Sukaya, Dewi, L. C., & Delfianti, M. N. I. (2020). The characterization of Black Pigeon Pea (Cajanus cajan) in Gunung Kidul, Yogyakarta. Caraka Tani: Journal of Sustainable Agriculture, 35(1), 78–88. https://doi.org/10.20961/carakatani.v35i1.28400

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

JTAS-3034-2024

Download Full Article PDF

Share this article

Recent Articles